Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MT_2018_21_2_a1, author = {A. Yu. Bernshteyn and A. V. Kostochka}, title = {On differences between {DP-coloring} and list coloring}, journal = {Matemati\v{c}eskie trudy}, pages = {61--71}, publisher = {mathdoc}, volume = {21}, number = {2}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MT_2018_21_2_a1/} }
A. Yu. Bernshteyn; A. V. Kostochka. On differences between DP-coloring and list coloring. Matematičeskie trudy, Tome 21 (2018) no. 2, pp. 61-71. http://geodesic.mathdoc.fr/item/MT_2018_21_2_a1/
[1] Bernshtein A., Kostochka A., Pron S., “O DP-raskraske grafov i multigrafov”, Sib. matem. zhurn., 58:1 (2017), 36–47 | MR
[2] Vizing V. G., “Ob otsenke khromaticheskogo klassa $p$-grafa”, Diskretnyi analiz, 1964, no. 3, 25–30
[3] Vizing V. G., “Raskraska vershin grafa v predpisannye tsveta”, Diskretnyi analiz, 1976, no. 29, 3–10 | Zbl
[4] Alon N., “Degrees and choice numbers”, Random Struct. Algorithms, 16:4 (2000), 364–368 | 3.0.CO;2-0 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[5] Alon N., Tarsi M., “Colorings and orientations of graphs”, Combinatorica, 12:2 (1992), 125–134 | DOI | MR | Zbl
[6] Bernshteyn A., “The asymptotic behavior of the correspondence chromatic number”, Discrete Math., 339:11 (2016), 2680–2692 | DOI | MR | Zbl
[7] Bernshteyn A., The Johansson–Molloy Theorem for DP-Coloring, 2017, arXiv: 1708.03843
[8] Bernshteyn A., Kostochka A., Sharp Dirac's Theorem for DP-Critical Graphs, 2016, arXiv: 1609.09122 | MR
[9] Borodin O., “Colorings of plane graphs: a survey”, Discrete Math., 313:4 (2013), 517–539 | DOI | MR | Zbl
[10] Borodin O. V., Kostochka A., Woodall D. R., “List edge and list total colorings of multigraphs”, J. Combin. Theory, Ser. B, 71:2 (1997), 184–204 | DOI | MR | Zbl
[11] Borodin O. V., Kostochka A., Woodall D. R., “On kernel-perfect orientations of line graphs”, Discrete Math., 191 (1998), 45–49 | DOI | MR | Zbl
[12] Dirac G. A., “A theorem of R. L. Brooks and a conjecture of H. Hadwiger”, Proc. London Math. Soc. (3), 7:3 (1957), 161–195 | DOI | MR | Zbl
[13] Dirac G. A., “The number of edges in critical graphs”, J. Reine Angew. Math., 268–269 (1974), 150–164 | MR | Zbl
[14] Dvořák Z., Postle L., List-Coloring Embedded Graphs Without Cycles of Lengths $4$ to $8$, 2015, arXiv: 1508.03437
[15] Erdős P., Rubin A. L., Taylor H., “Choosability in Graphs”, Proc. West Coast Conf. on Combinatorics, Graph Theory, and Computing, Congressus Numerantium XXVI, 1979, 125–157 | MR
[16] Galvin F., “The list chromatic index of a bipartite multigraph”, J. Combin. Theory Ser. B, 63 (1995), 153–158 | DOI | MR | Zbl
[17] Jensen T. R., Toft B., “12.20 List-edge-chromatic numbers”, Graph Coloring Problems, Wiley-Interscience, New York, 1995, 201–202 | MR
[18] Johansson A., Asymptotic choice number for triangle free graphs, Technical Report, DIMACS, 1996, 91–95
[19] Kostochka A. V., Stiebitz M., “A list version of Dirac's theorem on the number of edges in colour-critical graphs”, J. Graph Theory, 39:3 (2002), 165–177 | DOI | MR | Zbl
[20] Molloy M., The List Chromatic Number of Graphs with Small Clique Number, 2017, arXiv: 1701.09133 | MR
[21] Shannon C. E., “A theorem on coloring the lines of a network”, J. Math. Phys., 28 (1949), 148–151 | DOI | MR | Zbl
[22] Thomassen C., “Every planar graph is $5$-choosable”, J. Combin. Theory, Ser. B, 62:1 (1994), 180–181 | DOI | MR | Zbl
[23] Thomassen C., “$3$-list-coloring planar graphs of girth $5$”, J. Combin. Theory, Ser. B, 64:1 (1995), 101–107 | DOI | MR | Zbl