On differences between DP-coloring and list coloring
Matematičeskie trudy, Tome 21 (2018) no. 2, pp. 61-71

Voir la notice de l'article provenant de la source Math-Net.Ru

DP-Coloring (also known as correspondence coloring) is a generalization of list coloring introduced recently by Dvořák and Postle [12]. Many known upper bounds for the list-chromatic number extend to the DP-chromatic number, but not all of them do. In this note we describe some properties of DP-coloring that set it aside from list coloring. In particular, we give an example of a planar bipartite graph with DP-chromatic number $4$ and prove that the edge-DP-chromatic number of a $d$-regular graph with $d\geq2$ is always at least $d+1$.
@article{MT_2018_21_2_a1,
     author = {A. Yu. Bernshteyn and A. V. Kostochka},
     title = {On differences between {DP-coloring} and list coloring},
     journal = {Matemati\v{c}eskie trudy},
     pages = {61--71},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2018_21_2_a1/}
}
TY  - JOUR
AU  - A. Yu. Bernshteyn
AU  - A. V. Kostochka
TI  - On differences between DP-coloring and list coloring
JO  - Matematičeskie trudy
PY  - 2018
SP  - 61
EP  - 71
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2018_21_2_a1/
LA  - ru
ID  - MT_2018_21_2_a1
ER  - 
%0 Journal Article
%A A. Yu. Bernshteyn
%A A. V. Kostochka
%T On differences between DP-coloring and list coloring
%J Matematičeskie trudy
%D 2018
%P 61-71
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2018_21_2_a1/
%G ru
%F MT_2018_21_2_a1
A. Yu. Bernshteyn; A. V. Kostochka. On differences between DP-coloring and list coloring. Matematičeskie trudy, Tome 21 (2018) no. 2, pp. 61-71. http://geodesic.mathdoc.fr/item/MT_2018_21_2_a1/