A Riemann-Hilbert problem for the Moisil--Teodorescu system
Matematičeskie trudy, Tome 21 (2018) no. 1, pp. 155-192.

Voir la notice de l'article provenant de la source Math-Net.Ru

In a bounded domain with smooth boundary in $\mathbb{R}^3$ we consider the stationary Maxwell equations for a function $u$ with values in $\mathbb{R}^3$ subject to a nonhomogeneous condition $(u,v)_x = u_0$ on the boundary, where $v$ is a given vector field and $u_0$ a function on the boundary. We specify this problem within the framework of the Riemann–Hilbert boundary value problems for the Moisil–Teodorescu system. This latter is proved to satisfy the Shapiro–Lopatinskij condition if an only if the vector $v$ is at no point tangent to the boundary. The Riemann–Hilbert problem for the Moisil–Teodorescu system fails to possess an adjoint boundary value problem with respect to the Green formula, which satisfies the Shapiro–Lopatinskij condition. We develop the construction of Green formula to get a proper concept of adjoint boundary value problem.
@article{MT_2018_21_1_a6,
     author = {A. N. Polkovnikov and N. Tarkhanov},
     title = {A {Riemann-Hilbert} problem for the {Moisil--Teodorescu} system},
     journal = {Matemati\v{c}eskie trudy},
     pages = {155--192},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2018_21_1_a6/}
}
TY  - JOUR
AU  - A. N. Polkovnikov
AU  - N. Tarkhanov
TI  - A Riemann-Hilbert problem for the Moisil--Teodorescu system
JO  - Matematičeskie trudy
PY  - 2018
SP  - 155
EP  - 192
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2018_21_1_a6/
LA  - ru
ID  - MT_2018_21_1_a6
ER  - 
%0 Journal Article
%A A. N. Polkovnikov
%A N. Tarkhanov
%T A Riemann-Hilbert problem for the Moisil--Teodorescu system
%J Matematičeskie trudy
%D 2018
%P 155-192
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2018_21_1_a6/
%G ru
%F MT_2018_21_1_a6
A. N. Polkovnikov; N. Tarkhanov. A Riemann-Hilbert problem for the Moisil--Teodorescu system. Matematičeskie trudy, Tome 21 (2018) no. 1, pp. 155-192. http://geodesic.mathdoc.fr/item/MT_2018_21_1_a6/

[1] Agranovich M. S., “Elliptic boundary value problems”, Partial Differential Equations, IX, Encyclopaedia Math. Sci., 79, Springer-Verlag, Berlin et al., 1997, 1–144 | DOI | MR | Zbl

[2] Alsaedy A., Tarkhanov N., “The method of Fischer–Riesz equations for elliptic boundary value problems”, J. Complex Anal., 2013:1 (2013), 1–11 | MR

[3] Alsaedy A., Tarkhanov N., “A Hilbert boundary value problem for generalized Cauchy–Riemann equations”, Advances in Applied Clifford Algebras, 27:2 (2017), 931–953 | DOI | MR | Zbl

[4] Calderón A. P., “Boundary value problems for elliptic equations”, Outlines of the Joint Soviet-American Symp. on Partial Differential Equations (Novosibirsk, 1963), Nauka, Novosibirsk, 1963, 303–304 | MR

[5] Gakhov F. D., Boundary Value Problems, Nauka, M., 1977 | MR | Zbl

[6] Kupradze V. D., “Approximate solution of problems of mathematical physics”, Uspekhi Mat. Nauk, 22:2 (1967), 59–107 | MR | Zbl

[7] Moisil G. C., Teodorescu N., “Fonction holomorphic dans l'espace”, Bul. Soc. St. Cluj, 6 (1931), 177–194 | MR | Zbl

[8] Picone M., Fichera G., “Neue funktional-analytische Grundlagen für die Existenzprobleme und Lösungsmethoden von Systemen linearer partieller Differentialgleichungen”, Monatsh. Math., 54 (1950), 188–209 | DOI | MR | Zbl

[9] Stern I., “Boundary value problems for generalized Cauchy–Riemann systems in the space”, Boundary Value and Initial Value Problems in Complex Analysis: Studies in Complex Analysis and Its Applications to Partial Differential Equations, I (Halle, 1988), Pitman Res. Notes Math. Ser., 256, Longman Sci. Tech., Harlow, 1991 | MR | Zbl

[10] Stern I., “On the existence of Fredholm boundary value problems for generalized Cauchy–Riemann systems”, Complex Var., 21 (1993), 19–38 | MR | Zbl

[11] Stern I., “Direct methods for generalized Cauchy–Riemann systems in the space”, Complex Var., 23 (1993), 73–100 | MR | Zbl

[12] Straube E. J., “Harmonic and analytic functions admitting a distribution boundary value”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 11:4 (1984), 559–591 | MR | Zbl

[13] Tarkhanov N., The Cauchy Problem for Solutions of Elliptic Equations, Mathematical Topics, 7, Akademie Verlag, Berlin, 1995 | MR | Zbl

[14] Volevich L. R., “On the solvability of boundary value problems for general elliptic systems”, Mat. Sb., 68 (110):3 (1965), 373–416 | MR | Zbl