Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MT_2018_21_1_a6, author = {A. N. Polkovnikov and N. Tarkhanov}, title = {A {Riemann-Hilbert} problem for the {Moisil--Teodorescu} system}, journal = {Matemati\v{c}eskie trudy}, pages = {155--192}, publisher = {mathdoc}, volume = {21}, number = {1}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MT_2018_21_1_a6/} }
A. N. Polkovnikov; N. Tarkhanov. A Riemann-Hilbert problem for the Moisil--Teodorescu system. Matematičeskie trudy, Tome 21 (2018) no. 1, pp. 155-192. http://geodesic.mathdoc.fr/item/MT_2018_21_1_a6/
[1] Agranovich M. S., “Elliptic boundary value problems”, Partial Differential Equations, IX, Encyclopaedia Math. Sci., 79, Springer-Verlag, Berlin et al., 1997, 1–144 | DOI | MR | Zbl
[2] Alsaedy A., Tarkhanov N., “The method of Fischer–Riesz equations for elliptic boundary value problems”, J. Complex Anal., 2013:1 (2013), 1–11 | MR
[3] Alsaedy A., Tarkhanov N., “A Hilbert boundary value problem for generalized Cauchy–Riemann equations”, Advances in Applied Clifford Algebras, 27:2 (2017), 931–953 | DOI | MR | Zbl
[4] Calderón A. P., “Boundary value problems for elliptic equations”, Outlines of the Joint Soviet-American Symp. on Partial Differential Equations (Novosibirsk, 1963), Nauka, Novosibirsk, 1963, 303–304 | MR
[5] Gakhov F. D., Boundary Value Problems, Nauka, M., 1977 | MR | Zbl
[6] Kupradze V. D., “Approximate solution of problems of mathematical physics”, Uspekhi Mat. Nauk, 22:2 (1967), 59–107 | MR | Zbl
[7] Moisil G. C., Teodorescu N., “Fonction holomorphic dans l'espace”, Bul. Soc. St. Cluj, 6 (1931), 177–194 | MR | Zbl
[8] Picone M., Fichera G., “Neue funktional-analytische Grundlagen für die Existenzprobleme und Lösungsmethoden von Systemen linearer partieller Differentialgleichungen”, Monatsh. Math., 54 (1950), 188–209 | DOI | MR | Zbl
[9] Stern I., “Boundary value problems for generalized Cauchy–Riemann systems in the space”, Boundary Value and Initial Value Problems in Complex Analysis: Studies in Complex Analysis and Its Applications to Partial Differential Equations, I (Halle, 1988), Pitman Res. Notes Math. Ser., 256, Longman Sci. Tech., Harlow, 1991 | MR | Zbl
[10] Stern I., “On the existence of Fredholm boundary value problems for generalized Cauchy–Riemann systems”, Complex Var., 21 (1993), 19–38 | MR | Zbl
[11] Stern I., “Direct methods for generalized Cauchy–Riemann systems in the space”, Complex Var., 23 (1993), 73–100 | MR | Zbl
[12] Straube E. J., “Harmonic and analytic functions admitting a distribution boundary value”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 11:4 (1984), 559–591 | MR | Zbl
[13] Tarkhanov N., The Cauchy Problem for Solutions of Elliptic Equations, Mathematical Topics, 7, Akademie Verlag, Berlin, 1995 | MR | Zbl
[14] Volevich L. R., “On the solvability of boundary value problems for general elliptic systems”, Mat. Sb., 68 (110):3 (1965), 373–416 | MR | Zbl