Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MT_2018_21_1_a4, author = {S. V. Nagaev}, title = {The central limit theorem for {Markov} chains with general state space}, journal = {Matemati\v{c}eskie trudy}, pages = {73--124}, publisher = {mathdoc}, volume = {21}, number = {1}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MT_2018_21_1_a4/} }
S. V. Nagaev. The central limit theorem for Markov chains with general state space. Matematičeskie trudy, Tome 21 (2018) no. 1, pp. 73-124. http://geodesic.mathdoc.fr/item/MT_2018_21_1_a4/
[1] Kolmogorov A. N., “Lokalnaya predelnaya teorema dlya klassicheskikh tsepei Markova”, Izv. AN SSSR. Ser. matem., 13:4 (1949), 281–300 | Zbl
[2] Loev M., Teoriya veroyatnostei, Izd-vo inostr. lit., M., 1962 | MR
[3] Nagaev S. V., “O nekotorykh predelnykh teoremakh dlya odnorodnykh tsepei Markova”, TVP, 2:4 (1957), 389–416
[4] Nagaev S. V., “Nekotorye voprosy teorii odnorodnykh markovskikh protsessov s diskretnym vremenem”, Dokl. AN SSSR, 139:1 (1961), 34–36 | Zbl
[5] Nagaev S. V., “Utochnenie predelnykh teorem dlya odnorodnykh tsepei Markova”, TVP, 6:1 (1961), 67–86 | MR
[6] Nagaev S. V., “Ergodicheskie teoremy dlya markovskikh protsessov s diskretnym vremenem”, Sib. matem. zhurn., 6:2 (1965), 413–432 | Zbl
[7] Nagaev S. V., “Spektralnyi metod i ergodicheskie teoremy dlya obschikh tsepei Markova”, Izv. RAN. Ser. matem., 79:2 (2015), 101–136 | DOI | MR | Zbl
[8] Sarymsakov T. A., Osnovy teorii protsessov Markova, Gostekhizdat, M., 1954 | MR
[9] Sirazhdinov S. Kh., “Utochnenie predelnykh teorem dlya tsepei Markova”, Dokl. AN SSSR, 84:6 (1952), 1143–1146 | Zbl
[10] Chzhun Kai-Lai, Odnorodnye tsepi Markova, Izd-vo inostr. lit., M., 1964
[11] Athreya K. B., Ney P., “A new approach to the limit theory of recurrent Markov chains”, Trans. Amer. Math. Soc., 245 (1978), 493–501 | DOI | MR | Zbl
[12] Bolthausen E. Z., “The Berry–Esseen theorem for functionals of discrete Markov chains”, Z. Wahrsch. Verw. Gebiete, 54:1 (1980), 59–73 | DOI | MR | Zbl
[13] Bolthausen E. Z., “The Berry–Esseen theorem for strongly mixing Harris recurrent Markov chains”, Z. Wahrsch. Verw. Gebiete, 60:3 (1982), 284–289 | DOI | MR
[14] Cogburn R., “The central limit theorem for Markov processes”, Proc. 6th Berkeley Sympos. Math. Statist. Probab., v. 2, Univ. California Press, Berkeley, Calif., 1972, 485–512 | Zbl
[15] Doeblin W., “Sur deux problemes de Kolmogoroff concernant les chaines denombrables”, Bull. Soc. Math. France, 66 (1938), 210–220 | DOI | MR
[16] Guivarc'h Y., “Application de un theoreme limite local a la transcience et a la recurrence de marches de Markov”, Lecture Notes in Math., 1096, Springer-Verlag, Berlin, etc., 1984, 301–332 | DOI | MR
[17] Guivarc'h Y., Hardy J., “Theoremes limites pour une classe de chaines de Markov et applications aux diffeomorphismes d'Anosov”, Ann. Inst. H. Poincaré, 24:1 (1988), 73–98 | MR | Zbl
[18] Guivarc'h Y., Le Page E., “On spectral properties of a family of transfer operators and convergence to stable laws for affine random walks”, Ergodic Theory Dynam. Systems, 28:2 (2008), 423–446 | MR | Zbl
[19] Harris T. E., “The existence of stationary measures for certain Markov processes”, Proc. $3th$ Berkeley Sympos. Math. Statist. Probab., v. 2, Univ. California Press, Berkeley, Calif., 1956, 113–124 | MR
[20] Hennion H., “Derivabilite du plus grand exposant caracteristique des produits de matrices aleatoires independantes a coefficients positifs”, Ann. Inst. H. Poincaré, 27:1 (1991), 27–59 | MR | Zbl
[21] Hennion H., “Sur un theoreme spectral et son application aux noyaux lipschitziens”, Proc. Amer. Math. Soc., 118:2 (1993), 627–634 | MR | Zbl
[22] Hennion H., Hervé L., Limit Theorems for Markov Chains and Stochastic Properties of Dynamical Systems by Quasi-Compactness, Lecture Notes in Math., 1766, Springer-Verlag, Berlin, 2001 | DOI | MR | Zbl
[23] Hennion H., Hervé L., “Central limit theorems for iterated random Lipschitz mappings”, Ann. Probab., 32:3A (2004), 1934–1984 | MR | Zbl
[24] Hervé L., Pene F., “The Nagaev–Guivarc'h method via the Keller–Liverani theorem”, Bull. Soc. Math. France, 138 (2010), 415–489 | DOI | MR | Zbl
[25] Le Page E., “Theoremes limites pour les produits de matrices aleatoires”, Probability measures on groups, Lecture Notes in Math., 928, Springer-Verlag, Berlin, 1982, 258–303 | DOI | MR
[26] Milhaud X., Raugi A., “Etude de l'estimateur du maximum de vraisemblance dans le cas d'un processus auto-regressif: convergence, normalite asymptotique, vitesse de convergence”, Ann. Inst. H. Poincaré, 25:4 (1989), 383–428 | MR | Zbl
[27] Nummelin E., “A splitting technique for Harris recurrent Markov chains”, Z. Wahrsch. Verw. Gebiete, 43:4 (1978), 309–318 | DOI | MR | Zbl
[28] Orey S., “Recurrent Markov chains”, Pacif. J. Math., 9:3 (1959), 805–827 | DOI | MR | Zbl
[29] Pene F., “Rate of convergence in the multidimensional CLT for stationary processes. Application to the Knudsen gas and to the Sinai billiard”, Ann. Appl. Probab., 15:4 (2005), 2331–2392 | DOI | MR | Zbl
[30] Romanovsky V. I., “Recherches sur les chaines de Markoff”, Acta Math., 66 (1935), 147–251 | DOI | MR
[31] Rousseau-Egele J., “Un theoreme d'un limite locale pour une classe de transformations dilatantes et monotones par morceaux”, Ann. Probab., 11:3 (1983), 772–788 | DOI | MR | Zbl
[32] Stone C., “On local and ratio limit theorems”, Proc. 5th Berkeley Sympos. Math. Statist. Probab., Part 2, v. II, Contributions to Probability Theory, Univ. California Press, Berkeley–Los Angeles, Calif., 1967, 217–224 | MR | Zbl