Periodic groups saturated with the linear groups of degree $2$ and the unitary groups of degree $3$ over finite fields of odd characteristic
Matematičeskie trudy, Tome 21 (2018) no. 1, pp. 55-72
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\mathfrak{M}$ denote the set of the simple $3$-dimensional unitary groups $U_3$ and the simple linear groups $L_2$ over finite fields of odd characteristic. We prove that each periodic group saturated with groups in $\mathfrak{M}$ is locally finite and isomorphic to either $U_3(Q)$ or $L_2(Q)$ for a suitable locally finite field $Q$ of odd characteristic.
@article{MT_2018_21_1_a3,
author = {D. V. Lytkina and A. A. Shlepkin},
title = {Periodic groups saturated with the linear groups of degree $2$ and the unitary groups of degree $3$ over finite fields of odd characteristic},
journal = {Matemati\v{c}eskie trudy},
pages = {55--72},
publisher = {mathdoc},
volume = {21},
number = {1},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MT_2018_21_1_a3/}
}
TY - JOUR AU - D. V. Lytkina AU - A. A. Shlepkin TI - Periodic groups saturated with the linear groups of degree $2$ and the unitary groups of degree $3$ over finite fields of odd characteristic JO - Matematičeskie trudy PY - 2018 SP - 55 EP - 72 VL - 21 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MT_2018_21_1_a3/ LA - ru ID - MT_2018_21_1_a3 ER -
%0 Journal Article %A D. V. Lytkina %A A. A. Shlepkin %T Periodic groups saturated with the linear groups of degree $2$ and the unitary groups of degree $3$ over finite fields of odd characteristic %J Matematičeskie trudy %D 2018 %P 55-72 %V 21 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MT_2018_21_1_a3/ %G ru %F MT_2018_21_1_a3
D. V. Lytkina; A. A. Shlepkin. Periodic groups saturated with the linear groups of degree $2$ and the unitary groups of degree $3$ over finite fields of odd characteristic. Matematičeskie trudy, Tome 21 (2018) no. 1, pp. 55-72. http://geodesic.mathdoc.fr/item/MT_2018_21_1_a3/