Periodic groups saturated with the linear groups of degree $2$ and the unitary groups of degree $3$ over finite fields of odd characteristic
Matematičeskie trudy, Tome 21 (2018) no. 1, pp. 55-72

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathfrak{M}$ denote the set of the simple $3$-dimensional unitary groups $U_3$ and the simple linear groups $L_2$ over finite fields of odd characteristic. We prove that each periodic group saturated with groups in $\mathfrak{M}$ is locally finite and isomorphic to either $U_3(Q)$ or $L_2(Q)$ for a suitable locally finite field $Q$ of odd characteristic.
@article{MT_2018_21_1_a3,
     author = {D. V. Lytkina and A. A. Shlepkin},
     title = {Periodic groups saturated with the linear groups of degree $2$ and the unitary groups of degree $3$ over finite fields of odd characteristic},
     journal = {Matemati\v{c}eskie trudy},
     pages = {55--72},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2018_21_1_a3/}
}
TY  - JOUR
AU  - D. V. Lytkina
AU  - A. A. Shlepkin
TI  - Periodic groups saturated with the linear groups of degree $2$ and the unitary groups of degree $3$ over finite fields of odd characteristic
JO  - Matematičeskie trudy
PY  - 2018
SP  - 55
EP  - 72
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2018_21_1_a3/
LA  - ru
ID  - MT_2018_21_1_a3
ER  - 
%0 Journal Article
%A D. V. Lytkina
%A A. A. Shlepkin
%T Periodic groups saturated with the linear groups of degree $2$ and the unitary groups of degree $3$ over finite fields of odd characteristic
%J Matematičeskie trudy
%D 2018
%P 55-72
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2018_21_1_a3/
%G ru
%F MT_2018_21_1_a3
D. V. Lytkina; A. A. Shlepkin. Periodic groups saturated with the linear groups of degree $2$ and the unitary groups of degree $3$ over finite fields of odd characteristic. Matematičeskie trudy, Tome 21 (2018) no. 1, pp. 55-72. http://geodesic.mathdoc.fr/item/MT_2018_21_1_a3/