Periodic groups saturated with the linear groups of degree $2$ and the unitary groups of degree $3$ over finite fields of odd characteristic
Matematičeskie trudy, Tome 21 (2018) no. 1, pp. 55-72.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathfrak{M}$ denote the set of the simple $3$-dimensional unitary groups $U_3$ and the simple linear groups $L_2$ over finite fields of odd characteristic. We prove that each periodic group saturated with groups in $\mathfrak{M}$ is locally finite and isomorphic to either $U_3(Q)$ or $L_2(Q)$ for a suitable locally finite field $Q$ of odd characteristic.
@article{MT_2018_21_1_a3,
     author = {D. V. Lytkina and A. A. Shlepkin},
     title = {Periodic groups saturated with the linear groups of degree $2$ and the unitary groups of degree $3$ over finite fields of odd characteristic},
     journal = {Matemati\v{c}eskie trudy},
     pages = {55--72},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2018_21_1_a3/}
}
TY  - JOUR
AU  - D. V. Lytkina
AU  - A. A. Shlepkin
TI  - Periodic groups saturated with the linear groups of degree $2$ and the unitary groups of degree $3$ over finite fields of odd characteristic
JO  - Matematičeskie trudy
PY  - 2018
SP  - 55
EP  - 72
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2018_21_1_a3/
LA  - ru
ID  - MT_2018_21_1_a3
ER  - 
%0 Journal Article
%A D. V. Lytkina
%A A. A. Shlepkin
%T Periodic groups saturated with the linear groups of degree $2$ and the unitary groups of degree $3$ over finite fields of odd characteristic
%J Matematičeskie trudy
%D 2018
%P 55-72
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2018_21_1_a3/
%G ru
%F MT_2018_21_1_a3
D. V. Lytkina; A. A. Shlepkin. Periodic groups saturated with the linear groups of degree $2$ and the unitary groups of degree $3$ over finite fields of odd characteristic. Matematičeskie trudy, Tome 21 (2018) no. 1, pp. 55-72. http://geodesic.mathdoc.fr/item/MT_2018_21_1_a3/

[1] Belyaev V. V., “Lokalno konechnye gruppy Shevalle”, Issledovaniya po teorii grupp, UNTs AN SSSR, Sverdlovsk, 1984, 39–50

[2] Borovik A. V., “Vlozheniya konechnykh grupp Shevalle i periodicheskie lineinye gruppy”, Sib. matem. zhurn., 24:6 (1983), 26–35 | MR | Zbl

[3] Zhurtov A. X., “O regulyarnykh avtomorfizmakh poryadka 3 i parakh Frobeniusa”, Sib. matem. zhurn., 41:2 (2000), 329–338 | MR | Zbl

[4] Kargapolov M. I., Merzlyakov Yu. I., Osnovy teorii grupp, Nauka, M., 1982 | MR

[5] Kuznetsov A. A., Filippov K. A., “Gruppy, nasyschennye zadannym mnozhestvom grupp”, Sib. elektron. matem. izv., 8 (2011), 230–246 | MR | Zbl

[6] Li B. Dzh., Lytkina D. V., “O silovskikh 2-podgruppakh periodicheskikh grupp, nasyschennykh konechnymi prostymi gruppami”, Sib. matem. zhurn., 57:6 (2016), 1313–1319 | MR

[7] Lytkina D. V., “Periodicheskie gruppy, nasyschennye pryamymi proizvedeniyami konechnykh prostykh grupp. II”, Sib. matem. zhurn., 52:5 (2011), 1096–1112 | MR | Zbl

[8] Lytkina D. V., Tukhvatullina L. R., Filippov K. A., “O periodicheskikh gruppakh, nasyschennykh konechnym mnozhestvom konechnykh prostykh grupp”, Sib. matem. zhurn., 49:2 (2008), 394–399 | MR | Zbl

[9] Lytkina D. V., Shlepkin A. A., “O periodicheskikh gruppakh, nasyschennykh konechnymi prostymi gruppami”, Algebra i logika, 55:4 (2016), 441–448 | MR | Zbl

[10] Maltsev A. I., “Ob izomorfnom predstavlenii beskonechnykh grupp matritsami”, Matem. sb., 8(50):3 (1940), 405–422 | Zbl

[11] Rubashkin A. G., Filippov K. A., “O periodicheskikh gruppakh, nasyschennykh gruppami $L_2(p^n)$”, Sib. matem. zhurn., 46:6 (2005), 1388–1392 | MR | Zbl

[12] Shlepkin A. K., “Sopryazhenno biprimitivno konechnye gruppy, soderzhaschie konechnye nerazreshimye podgruppy”, Tretya mezhdunar. konf. po algebre, Tez. dokl. (23–28 avgusta 1993 g.), Krasnoyarsk, 1993

[13] Shlepkin A. K., Rubashkin A. G., “Ob odnom klasse periodicheskikh grupp”, Algebra i logika, 44:1 (2005), 114–125 | MR | Zbl

[14] Shunkov V. P., “Ob odnom klasse $p$-grupp”, Algebra i logika, 9:4 (1970), 484–496 | MR

[15] Shunkov V. P., “O periodicheskikh gruppakh s pochti regulyarnoi involyutsiei”, Algebra i logika, 11:4 (1972), 470–494

[16] Alperin J. L., Brauer R., Gorenstein D., “Finite groups with quasi-dihedral and wreathed Sylow 2-subgroup”, Trans. Amer. Math. Soc., 151 (1970), 1–261 | MR | Zbl

[17] Bray J. N., Holt D. F., Roney-Dougal C. M., The Maximal Subgroups of the Low-Dimensional Finite Classical Groups, Cambridge Univ. Press, Cambridge, 2013 | MR | Zbl

[18] Carter R. W., Simple Groups of Lie Type, Wiley Sons, London etc., 1972 | MR | Zbl

[19] Hartley B., Shute G., “Monomorphisms and direct limits of finite groups of Lie type”, Quart. J. Math. Oxford Ser. (2), 35:137 (1984), 49–71 | DOI | MR | Zbl

[20] Kegel O. N., Wehrfritz B. A. F., Locally Finite Groups, North-Holland Mathematical Library, 3, North-Holland Publishing Co., Amsterdam, 1973 | MR | Zbl

[21] Thomas S., “The classification of the simple periodic linear groups”, Arch. Math., 41 (1983), 103–116 | DOI | MR | Zbl