Estimates for correlation in dynamical systems: from H\"older continuous functions to general observables
Matematičeskie trudy, Tome 20 (2017) no. 2, pp. 90-119.

Voir la notice de l'article provenant de la source Math-Net.Ru

For many dynamical systems that are popular in applications, estimates are known for the decay of correlation in the case of Hölder continuous functions. In the present article, we suggest an approach that allows us to obtain estimates for correlation in dynamical systems in the case of arbitrary functions. This approach is based on approximation and estimates are obtained with the use of known estimates for Hölder continuous functions. We apply our approach to transitive Anosov diffeomorphisms and derive the central limit theorem for the characteristic functions of certain sets with boundary of zero measure.
@article{MT_2017_20_2_a4,
     author = {I. V. Podvigin},
     title = {Estimates for correlation in dynamical systems: from {H\"older} continuous functions to general observables},
     journal = {Matemati\v{c}eskie trudy},
     pages = {90--119},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2017_20_2_a4/}
}
TY  - JOUR
AU  - I. V. Podvigin
TI  - Estimates for correlation in dynamical systems: from H\"older continuous functions to general observables
JO  - Matematičeskie trudy
PY  - 2017
SP  - 90
EP  - 119
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2017_20_2_a4/
LA  - ru
ID  - MT_2017_20_2_a4
ER  - 
%0 Journal Article
%A I. V. Podvigin
%T Estimates for correlation in dynamical systems: from H\"older continuous functions to general observables
%J Matematičeskie trudy
%D 2017
%P 90-119
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2017_20_2_a4/
%G ru
%F MT_2017_20_2_a4
I. V. Podvigin. Estimates for correlation in dynamical systems: from H\"older continuous functions to general observables. Matematičeskie trudy, Tome 20 (2017) no. 2, pp. 90-119. http://geodesic.mathdoc.fr/item/MT_2017_20_2_a4/

[1] Berg I., Lëfstrëm I., Interpolyatsionnye prostranstva. Vvedenie, Mir, M., 1980

[2] Billingsli P., Skhodimost veroyatnostnykh mer, Nauka, M., 1977

[3] Bouen R., Metody simvolicheskoi dinamiki, Mir, M., 1979

[4] Burenkov V. I., “O plotnosti beskonechno differentsiruemykh funktsii v prostranstvakh Soboleva dlya proizvolnogo otkrytogo mnozhestva”, Tr. MIAN SSSR, 131, 1974, 39–50 | Zbl

[5] Kachurovskii A. G., “Skorosti skhodimosti v ergodicheskikh teoremakh”, UMN, 51:4 (1996), 73–124 | DOI | Zbl

[6] Kachurovskii A. G., Podvigin I. V., “Korrelyatsii, bolshie ukloneniya i skorosti skhodimosti v ergodicheskikh teoremakh dlya kharakteristicheskikh funktsii”, Dokl. RAN, 461:5 (2015), 509–512 | DOI | Zbl

[7] Kachurovskii A. G., Podvigin I. V., “Bolshie ukloneniya i skorosti skhodimosti v ergodicheskoi teoreme Birkgofa: perekhod ot gëlderovosti k nepreryvnosti”, Dokl. RAN, 466:1 (2016), 12–15 | DOI | Zbl

[8] Kachurovskii A. G., Podvigin I. V., “Otsenki skorostei skhodimosti v ergodicheskikh teoremakh fon Neimana i Birkgofa”, Trudy MMO, 77, no. 1, 2016, 1–66

[9] Kachurovskii A. G., Podvigin I. V., “Bolshie ukloneniya ergodicheskikh srednikh: perekhod ot gëlderovosti k nepreryvnosti pochti vsyudu”, Matem. tr., 20:1 (2017), 97–120

[10] Sedalischev V. V., “Svyaz skorostei skhodimosti v ergodicheskikh teoremakh fon Neimana i Birkgofa v $L_p$”, Sib. matem. zhurn., 55:2 (2014), 412–426

[11] Chernov N., Markaryan R., Khaoticheskie billiardy, Izhevskii in-t kompyuternykh issledovanii, Izhevsk, 2006

[12] Alves J. F., Freitas J. M., Luzzatto S., Vaienti S., “From rates of mixing to recurrence times via large deviations”, Adv. Math., 228:2 (2011), 1203–1236 | DOI | MR | Zbl

[13] Baladi V., Positive Operators and Decay of Correlations, Advanced Series in Nonlinear Dynamics, 16, World Scientific, Singapore, 2000 | DOI | MR | Zbl

[14] Bressaud X., Liverani C., “Anosov diffeomorphisms and coupling”, Ergodic Theory Dynam. Systems, 22:1 (2002), 129–152 | DOI | MR | Zbl

[15] Chazottes J.-R., Collet P., Schmitt B., “Statistical consequences of the Devroye inequality for processes. Applications to a class of non-uniformly hyperbolic dynamical systems”, Nonlinearity, 18:5 (2005), 2341–2364 | DOI | MR | Zbl

[16] Chernov N. I., “Limit theorems and Markov approximations for chaotic dynamical systems”, Probab. Theory Relat. Fields, 101:3 (1995), 321–362 | DOI | MR | Zbl

[17] Chernov N., “Advanced statistical properties of dispersing billiards”, J. Statist. Phys., 122:6 (2006), 1061–1094 | DOI | MR | Zbl

[18] Fan A. H., “Decay of Correlation for Expanding Toral Endomorphisms”, Proc. of the Internat. Conf. in Honor of Prof. Shantao Liao (Beijing), World Scientific, Singapore, 1999

[19] Holland M., “Slowly mixing systems and intermittency maps”, Ergodic Theory Dynam. Systems, 25:1 (2005), 133–159 | DOI | MR | Zbl

[20] Knill O., “Singular continuous spectrum and quantitative rates of weak mixing”, Discrete Contin. Dynam. Systems, 4:1 (1998), 33–42 | DOI | MR | Zbl

[21] Leplaideur R., Saussol B., “Large deviations for return times in non-rectangle sets for Axiom A diffeomorphisms”, Discrete Contin. Dynam. Systems, 22:1-2 (2008), 327–344 | MR | Zbl

[22] Melbourne I., “Large and moderate deviations for slowly mixing dynamical systems”, Proc. Amer. Math. Soc., 137:5 (2009), 1735–1741 | DOI | MR | Zbl

[23] Ruziboev M., “Decay of correlations for invertible maps with non-Hölder observables”, Dynam. System, 30:3 (2015), 341–352 | DOI | MR | Zbl

[24] Sarig O., “Decay of correlations”, Handbook of Dynamical Systems, Part B, v. 1, 2006, 244–263

[25] Stenlund M., “A strong pair correlation bound implies the CLT for Sinai billiards”, J. Stat. Phys., 140:1 (2010), 154–169 | DOI | MR | Zbl

[26] Young L.-S., “Statistical properties of dynamical systems with some hyperbolicity”, Ann. of Math., 147:3 (1998), 585–650 | DOI | MR | Zbl

[27] Young L.-S., “Recurrence times and rates of mixing”, Israel J. Math., 110 (1999), 153–188 | DOI | MR | Zbl

[28] Zhang H.-K., “Decay of correlations on non-Hölder observables”, Int. J. Nonlinear Sci., 10:3 (2010), 359–369 | MR | Zbl