Quasivarieties of graphs and independent axiomatizability
Matematičeskie trudy, Tome 20 (2017) no. 2, pp. 80-89.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present article, we continue to study the complexity of the lattice of quasivarieties of graphs. For every quasivariety $\mathbf{K}$ of graphs that contains a non-bipartite graph, we find a subquasivariety $\mathbf{K}^\prime\subseteq\mathbf{K}$ such that there exist $2^\omega$ subquasivarieties $\mathbf{K}^{\prime\prime}\in\mathrm{L_q}(\mathbf{K}^\prime)$ without covers (hence, without independent bases for their quasi-identities in $\mathbf{K}^\prime$).
@article{MT_2017_20_2_a3,
     author = {A. V. Kravchenko and A. V. Yakovlev},
     title = {Quasivarieties of graphs and independent axiomatizability},
     journal = {Matemati\v{c}eskie trudy},
     pages = {80--89},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2017_20_2_a3/}
}
TY  - JOUR
AU  - A. V. Kravchenko
AU  - A. V. Yakovlev
TI  - Quasivarieties of graphs and independent axiomatizability
JO  - Matematičeskie trudy
PY  - 2017
SP  - 80
EP  - 89
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2017_20_2_a3/
LA  - ru
ID  - MT_2017_20_2_a3
ER  - 
%0 Journal Article
%A A. V. Kravchenko
%A A. V. Yakovlev
%T Quasivarieties of graphs and independent axiomatizability
%J Matematičeskie trudy
%D 2017
%P 80-89
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2017_20_2_a3/
%G ru
%F MT_2017_20_2_a3
A. V. Kravchenko; A. V. Yakovlev. Quasivarieties of graphs and independent axiomatizability. Matematičeskie trudy, Tome 20 (2017) no. 2, pp. 80-89. http://geodesic.mathdoc.fr/item/MT_2017_20_2_a3/

[1] Benenson I. E., “O strukture kvazimnogoobrazii modelei”, Izv. vuzov. Matem., 1979, no. 12, 14–20

[2] Gorbunov V. A., “Pokrytiya v reshetkakh kvazimnogoobrazii i nezavisimaya baziruemost”, Algebra i logika, 16:5 (1977), 507–548 | Zbl

[3] Gorbunov V. A., Algebraicheskaya teoriya kvazimnogoobrazii, Nauchnaya kniga, Novosibirsk, 1999

[4] Kartashov V. K., “Kvazimnogoobraziya unarov s konechnym chislom tsiklov”, Algebra i logika, 19:2 (1980), 173–193

[5] Kartashova A. V., “Antimnogoobraziya unarov”, Algebra i logika, 50:4 (2011), 521–532 | Zbl

[6] Kravchenko A. V., “O reshetochnoi slozhnosti kvazimnogoobrazii grafov i endografov”, Algebra i logika, 36:3 (1997), 273–281 | Zbl

[7] Kravchenko A. V., “$\mathcal{Q}$-universalnye kvazimnogoobraziya grafov”, Algebra i logika, 41:3 (2002), 311–325 | Zbl

[8] Kravchenko A. V., “O slozhnosti reshetok kvazimnogoobrazii dlya mnogoobrazii unarnykh algebr. II”, Sib. elektron. matem. izv., 13 (2016), 388–394 | Zbl

[9] Sizyi S. V., “Kvazimnogoobraziya grafov”, Sib. matem. zhurn., 35:4 (1994), 879–892 | Zbl

[10] Shvidefski M. V., “O slozhnosti reshetok kvazimnogoobrazii”, Algebra i logika, 54:3 (2015), 381–398 | Zbl

[11] Adams M. E., Dziobiak W., “The lattice of quasivarieties of undirected graphs”, Algebra Universalis, 47:1 (2002), 7–11 | DOI | MR | Zbl

[12] Gorbunov V., Kravchenko A., “Universal Horn classes and colour-families of graphs”, Algebra Universalis, 46:1–2 (2001), 43–67 | MR | Zbl

[13] Hedrlín Z., Pultr A., “Symmetric relations (undirected graphs) with given semigroups”, Monatsh. Math., 69:4 (1965), 318–322 | DOI | MR | Zbl

[14] Nurakunov A. M., “Unreasonable lattices of quasivarieties”, Internat. J. Algebra Comput., 22:3 (2012), 1250006 | DOI | MR | Zbl

[15] Pultr A., Trnková V., Combinatorial, Algebraic and Topological Representations of Groups, Semigroups and Categories, v. 22, Academia, Prague, 1980 | MR

[16] Sapir M. V., “The lattice of quasivarieties of semigroups”, Algebra Universalis, 21:2–3 (1985), 172–180 | DOI | MR | Zbl