Quasivarieties of graphs and independent axiomatizability
Matematičeskie trudy, Tome 20 (2017) no. 2, pp. 80-89

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present article, we continue to study the complexity of the lattice of quasivarieties of graphs. For every quasivariety $\mathbf{K}$ of graphs that contains a non-bipartite graph, we find a subquasivariety $\mathbf{K}^\prime\subseteq\mathbf{K}$ such that there exist $2^\omega$ subquasivarieties $\mathbf{K}^{\prime\prime}\in\mathrm{L_q}(\mathbf{K}^\prime)$ without covers (hence, without independent bases for their quasi-identities in $\mathbf{K}^\prime$).
@article{MT_2017_20_2_a3,
     author = {A. V. Kravchenko and A. V. Yakovlev},
     title = {Quasivarieties of graphs and independent axiomatizability},
     journal = {Matemati\v{c}eskie trudy},
     pages = {80--89},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2017_20_2_a3/}
}
TY  - JOUR
AU  - A. V. Kravchenko
AU  - A. V. Yakovlev
TI  - Quasivarieties of graphs and independent axiomatizability
JO  - Matematičeskie trudy
PY  - 2017
SP  - 80
EP  - 89
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2017_20_2_a3/
LA  - ru
ID  - MT_2017_20_2_a3
ER  - 
%0 Journal Article
%A A. V. Kravchenko
%A A. V. Yakovlev
%T Quasivarieties of graphs and independent axiomatizability
%J Matematičeskie trudy
%D 2017
%P 80-89
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2017_20_2_a3/
%G ru
%F MT_2017_20_2_a3
A. V. Kravchenko; A. V. Yakovlev. Quasivarieties of graphs and independent axiomatizability. Matematičeskie trudy, Tome 20 (2017) no. 2, pp. 80-89. http://geodesic.mathdoc.fr/item/MT_2017_20_2_a3/