Definable sets in generic structures and their cardinalities
Matematičeskie trudy, Tome 20 (2017) no. 2, pp. 52-79.

Voir la notice de l'article provenant de la source Math-Net.Ru

Analyzing diagrams forming generative classes, we describe definable sets and their links in generic structures as well as cardinality bounds for these definable sets, finite or infinite. Introducing basic characteristics for definable sets in generic structures, we compare them each others and with cardinalities of these sets.We introduce calculi for (type-)definable sets allowing to compare their cardinalities. In terms of these calculi, Trichotomy Theorem for possibilities comparing cardinalities of definable sets is proved. Using these calculi, we characterize the possibility to construct a generic structure of a given generative class.
@article{MT_2017_20_2_a2,
     author = {I. Kiouvrekis and P. Stefaneas and S. V. Sudoplatov},
     title = {Definable sets in generic structures and their cardinalities},
     journal = {Matemati\v{c}eskie trudy},
     pages = {52--79},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2017_20_2_a2/}
}
TY  - JOUR
AU  - I. Kiouvrekis
AU  - P. Stefaneas
AU  - S. V. Sudoplatov
TI  - Definable sets in generic structures and their cardinalities
JO  - Matematičeskie trudy
PY  - 2017
SP  - 52
EP  - 79
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2017_20_2_a2/
LA  - ru
ID  - MT_2017_20_2_a2
ER  - 
%0 Journal Article
%A I. Kiouvrekis
%A P. Stefaneas
%A S. V. Sudoplatov
%T Definable sets in generic structures and their cardinalities
%J Matematičeskie trudy
%D 2017
%P 52-79
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2017_20_2_a2/
%G ru
%F MT_2017_20_2_a2
I. Kiouvrekis; P. Stefaneas; S. V. Sudoplatov. Definable sets in generic structures and their cardinalities. Matematičeskie trudy, Tome 20 (2017) no. 2, pp. 52-79. http://geodesic.mathdoc.fr/item/MT_2017_20_2_a2/

[1] Baisalov E. R., Meirembekov K. A., Nurtazin A. T., “Opredelimo minimalnye modeli”, Teoriya modelei v Kazakhstane, Sb. nauch. rabot, posvyaschennyi pamyati A. D. Taimanova, ed. M. M. Erimbetov, Eco Study, Almaty, 2006, 14–28 | Zbl

[2] Ershov Yu. L., Opredelimost i vychislimost, Nauchnaya kniga, Novosibirsk, 1996

[3] Kudaibergenov K. Zh., “O teoreme Fraisse dlya neschetnogo klassa konechno-porozhdennykh struktur”, Matem. tr., 20:1 (2017), 121–127

[4] Sudoplatov S. V., “Nesuschestvennye sovmescheniya i raskraski modelei”, Sib. matem. zhurn., 44:5 (2003), 1132–1141 | Zbl

[5] Sudoplatov S. V., “Sintaksicheskii podkhod k postroeniyu genericheskikh modelei”, Algebra i logika, 46:2 (2007), 244–268 | Zbl

[6] Sudoplatov S. V., Problema Lakhlana, Izd-vo NGTU, Novosibirsk, 2009

[7] Sudoplatov S. V., Klassifikatsiya schetnykh modelei polnykh teorii, NGTU, Novosibirsk, 2014

[8] Baizhanov B. S., “Orthogonality of one-types in weakly $o$-minimal theories”, Algebra and Model Theory, 2, Collection of papers, eds. A. G. Pinus et al., Novosibirsk State Tech. Univ., Novosibirsk, 1999, 5–28 | MR | Zbl

[9] Baizhanov B. S., Kulpeshov B. Sh., “On behaviour of $2$-formulas in weakly $o$-minimal theories”, Mathematical Logic in Asia, Proc. of the 9th Asian Logic Conf., eds. S. S. Goncharov et al., World Scientific, Singapore, 2006, 31–40 | DOI | MR | Zbl

[10] Baizhanov B. S., Sudoplatov S. V., Verbovskiy V. V., “Conditions for non-symmetric relations of semi-isolation”, Siberian Electronic Math. Reports, 9 (2012), 161–184 | MR | Zbl

[11] Baldwin J. T., Lachlan A. H., “On strongly minimal sets”, J. Symbolic Logic, 36:1 (1971), 79–96 | DOI | MR | Zbl

[12] Hodges W., Model Theory, Cambridge Univ. Press, Cambridge, 1993 | MR | Zbl

[13] Kudaibergenov K. Zh., “Cardinalities of definable sets in superstructures over models”, Siberian Adv. Math., 20:1 (2010), 58–67 | DOI | MR

[14] Marker D., Model Theory: An Introduction, Graduate Texts in Mathematics, 217, Springer-Verlag, New York, 2002 | MR | Zbl

[15] Pillay A., “Countable models of stable theories”, Proc. Amer. Math. Soc., 89:4 (1983), 666–672 | DOI | MR | Zbl

[16] Pillay A., “Stable theories, pseudoplanes and the number of countable models”, Ann. Pure Appl. Logic, 43:2 (1989), 147–160 | DOI | MR | Zbl

[17] Reineke J., “Minimale Gruppen”, Z. Math. Logik Grundlagen Math., 21 (1975), 357–359 | DOI | MR | Zbl

[18] Sudoplatov S. V., “Hypergraphs of prime models and distributions of countable models of small theories”, J. Math. Sci. (New York), 169:5 (2010), 680–695 | DOI | MR | Zbl

[19] Sudoplatov S. V., “Algebras of distributions of formulas with respect to generalized semi-isolation”, Algebra and Model Theory, 9, Collection of papers, eds. A. G. Pinus et al., Novosibirsk State Tech. Univ., Novosibirsk, 2013, 67–100 | Zbl

[20] Sudoplatov S. V., “Generative and pre-generative classes”, Proc. of the 10th Panhellenic Logic Symp. (June 11–15, 2015), Univ. of Aegean, Univ. of Crete, and Univ. of Athens, Greece, Samos, 2015, 30–34

[21] Sudoplatov S. V., “Generative classes generated by sets of diagrams”, Algebra and Model Theory, 10, Collection of papers, eds. A. G. Pinus et al., Novosibirsk State Tech. Univ., Novosibirsk, 2015, 163–174

[22] Sudoplatov S. V., Kiouvrekis Y., Stefaneas P., “Generic constructions and generic limits”, Algebraic Modeling of Topological and Computational Structures and Applications, Springer Proc. in Math. Statist., 219, eds. S. Lambropoulou et al., Springer Int. Publ., Berlin, 2017