Series in a Lipschitz perturbation of the boundary for solving the Dirichlet problem
Matematičeskie trudy, Tome 20 (2017) no. 1, pp. 158-200

Voir la notice de l'article provenant de la source Math-Net.Ru

In a special Lipschitz domain treated as a perturbation of the upper half-space, we construct a perturbation theory series for a positive harmonic function with zero trace. The terms of the series are harmonic extensions to the half-space from its boundary of distributions defined by a recurrent formula and passage to the limit. The approximation error by a segment of the series is estimated via a power of the seminorm of the perturbation in the homogeneous Slobodestkiĭ space $b_N^{1-1/N}$. The series converges if the Lipschitz constant of the perturbation is small.
@article{MT_2017_20_1_a9,
     author = {A. I. Parfenov},
     title = {Series in a {Lipschitz} perturbation of the boundary for solving the {Dirichlet} problem},
     journal = {Matemati\v{c}eskie trudy},
     pages = {158--200},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2017_20_1_a9/}
}
TY  - JOUR
AU  - A. I. Parfenov
TI  - Series in a Lipschitz perturbation of the boundary for solving the Dirichlet problem
JO  - Matematičeskie trudy
PY  - 2017
SP  - 158
EP  - 200
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2017_20_1_a9/
LA  - ru
ID  - MT_2017_20_1_a9
ER  - 
%0 Journal Article
%A A. I. Parfenov
%T Series in a Lipschitz perturbation of the boundary for solving the Dirichlet problem
%J Matematičeskie trudy
%D 2017
%P 158-200
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2017_20_1_a9/
%G ru
%F MT_2017_20_1_a9
A. I. Parfenov. Series in a Lipschitz perturbation of the boundary for solving the Dirichlet problem. Matematičeskie trudy, Tome 20 (2017) no. 1, pp. 158-200. http://geodesic.mathdoc.fr/item/MT_2017_20_1_a9/