Large deviations of the ergodic averages: from H\"older continuity to continuity almost everywhere
Matematičeskie trudy, Tome 20 (2017) no. 1, pp. 97-120.

Voir la notice de l'article provenant de la source Math-Net.Ru

For many dynamical systems that are popular in applications, estimates are known for the decay of large deviations of the ergodic averages in the case of Hölder continuous averaging functions. In the present article, we show that these estimates are valid with the same asymptotics in the case of bounded almost everywhere continuous functions. Using this fact, we obtain, in the case of such functions, estimates for the rate of convergence in Birkhoff's ergodic theorem and for the distribution of the time of return to a subset of the phase space.
@article{MT_2017_20_1_a5,
     author = {A. G. Kachurovskiǐ and I. V. Podvigin},
     title = {Large deviations of the ergodic averages: from {H\"older} continuity to continuity almost everywhere},
     journal = {Matemati\v{c}eskie trudy},
     pages = {97--120},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2017_20_1_a5/}
}
TY  - JOUR
AU  - A. G. Kachurovskiǐ
AU  - I. V. Podvigin
TI  - Large deviations of the ergodic averages: from H\"older continuity to continuity almost everywhere
JO  - Matematičeskie trudy
PY  - 2017
SP  - 97
EP  - 120
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2017_20_1_a5/
LA  - ru
ID  - MT_2017_20_1_a5
ER  - 
%0 Journal Article
%A A. G. Kachurovskiǐ
%A I. V. Podvigin
%T Large deviations of the ergodic averages: from H\"older continuity to continuity almost everywhere
%J Matematičeskie trudy
%D 2017
%P 97-120
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2017_20_1_a5/
%G ru
%F MT_2017_20_1_a5
A. G. Kachurovskiǐ; I. V. Podvigin. Large deviations of the ergodic averages: from H\"older continuity to continuity almost everywhere. Matematičeskie trudy, Tome 20 (2017) no. 1, pp. 97-120. http://geodesic.mathdoc.fr/item/MT_2017_20_1_a5/

[1] Kachurovskii A. G., “Skorosti skhodimosti v ergodicheskikh teoremakh”, UMN, 51:4 (1996), 73–124 | DOI | Zbl

[2] Kachurovskii A. G., Podvigin I. V., “Bolshie ukloneniya i skorosti skhodimosti v ergodicheskoi teoreme Birkgofa”, Matem. zametki, 94:4 (2013), 569–577 | DOI | Zbl

[3] Kachurovskii A. G., Podvigin I. V., “Korrelyatsii, bolshie ukloneniya i skorosti skhodimosti v ergodicheskikh teoremakh dlya kharakteristicheskikh funktsii”, Dokl. RAN, 461:5 (2015), 509–512 | DOI | Zbl

[4] Kachurovskii A. G., Podvigin I. V., “Bolshie ukloneniya i skorosti skhodimosti v ergodicheskoi teoreme Birkgofa: perekhod ot gëlderovosti k nepreryvnosti”, Dokl. RAN, 466:1 (2016), 12–15 | DOI | Zbl

[5] Kachurovskii A. G., Podvigin I. V., “Otsenki skorostei skhodimosti v ergodicheskikh teoremakh fon Neimana i Birkgofa”, Trudy MMO, 77, no. 1, 2016, 1–66

[6] Sendov B., Popov V., Usrednennye moduli gladkosti, Mir, M., 1988

[7] Alves J. F., Freitas J. M., Luzzatto S., Vaienti S., “From rates of mixing to recurrence times via large deviations”, Adv. Math., 228:2 (2011), 1203–1236 | DOI | MR | Zbl

[8] Alves J. F., Schnellmann D., “Ergodic properties of Viana-like maps with singularities in the base dynamics”, Proc. Amer. Math. Soc., 141:11 (2013), 3943–3955 | DOI | MR | Zbl

[9] Araujo V., Bufetov A., “A large deviations bound for the Teichmuller flow on the moduli space of abelian differentials”, Ergodic Theory Dynam. Systems, 31:4 (2011), 1043–1071 | DOI | MR | Zbl

[10] Azagra D., Ferrera J., “Regularization by sup-inf convolutions on Riemannian manifolds: An extension of Lasry-Lions theorem to manifolds of bounded curvature”, J. Math. Anal. Appl., 423:2 (2015), 994–1024 | DOI | MR | Zbl

[11] Bauschke H. H., Combettes P. L., Convex Analysis and Monotone Operator Theory in Hilbert Spaces, CMS Books in Mathematics, Springer, New York, 2011 | DOI | MR | Zbl

[12] Chung Y. M., “Large deviations on Markov towers”, Nonlinearity, 24:4 (2011), 1229–1252 | DOI | MR | Zbl

[13] Chung Y. M., Takahasi H., “Large deviation principle for Benedicks–Carleson quadratic maps”, Comm. Math. Phys., 315:3 (2012), 803–826 | DOI | MR | Zbl

[14] Hatomoto J., “Polynomial upper bounds on large and moderate deviations for diffeomorphisms with weak hyperbolic product structure”, Far East J. Math. Sci., 69:1 (2012), 1–25 | MR | Zbl

[15] Haydn N., “Entry and return times distribution”, Dynam. Syst., 28:3 (2013), 333–353 | DOI | MR | Zbl

[16] Hennion H., Hervé L., Limit Theorems for Markov Chains and Stochastic Properties of Dynamical Systems by Quasi-Compactness, Lecture Notes in Math., 1766, Springer-Verlag, Berlin, 2001 | DOI | MR | Zbl

[17] Lesigne E., Volny D., “Large deviations for generic stationary processes”, Colloq. Math., 84–85:1 (2000), 75–82 | MR | Zbl

[18] Mauldin R. D., “$\sigma$-Ideals and related Baire systems”, Fund. Math., 69 (1971), 171–177 | MR

[19] Mazzone F., “A characterization of almost everywhere continuous functions”, Real Anal. Exchange, 21:1 (1995–1996), 317–319 | MR

[20] Melbourne I., “Large and moderate deviations for slowly mixing dynamical systems”, Proc. Amer. Math. Soc., 137:5 (2009), 1735–1741 | DOI | MR | Zbl

[21] Pollicott M., Sharp R., “Large deviations for intermittent maps”, Nonlinearity, 22:9 (2009), 2079–2092 | DOI | MR | Zbl

[22] Pollicott M., Sharp R., “Large deviations, fluctuations and shrinking intervals”, Comm. Math. Phys., 290:1 (2009), 321–334 | DOI | MR | Zbl

[23] Rey-Bellet L., Young L.-S., “Large deviations in non-uniformly hyperbolic dynamical systems”, Ergodic Theory Dynam. Systems, 28:2 (2008), 587–612 | DOI | MR | Zbl

[24] Volny D., Weiss B., “Coboundaries in $L^\infty_0$”, Ann. Inst. H. Poincaré Probab. Stat., 40:6 (2004), 771–778 | DOI | MR | Zbl

[25] Waddington S., “Large deviation asymptotics for Anosov flows”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 13:4 (1996), 445–484 | DOI | MR | Zbl