$(q_1,q_2)$-quasimetrics bi-Lipschitz equivalent to $1$-quasimetrics
Matematičeskie trudy, Tome 20 (2017) no. 1, pp. 81-96.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the conditions of $(q_1,1)$- and $(1,q_2)$-quasimertricity of a distance function $\rho$ are sufficient for the existence of a quasimetric bi-Lipschitz equivalent to $\rho$. It follows that the Box-quasimetric defined with the use of basis vector fields of class $C^1$ whose commutators at most sum their degrees is bi-Lipschitz equivalent to some metric. On the other hand, we show that these conditions are not necessary. We prove the existence of $(q_1,q_2)$-quasimetrics for which there are no Lipschitz equivalent $1$-quasimetrics, which in particular implies another proof of a result by V. Schröder.
@article{MT_2017_20_1_a4,
     author = {A. V. Greshnov},
     title = {$(q_1,q_2)$-quasimetrics {bi-Lipschitz} equivalent to $1$-quasimetrics},
     journal = {Matemati\v{c}eskie trudy},
     pages = {81--96},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2017_20_1_a4/}
}
TY  - JOUR
AU  - A. V. Greshnov
TI  - $(q_1,q_2)$-quasimetrics bi-Lipschitz equivalent to $1$-quasimetrics
JO  - Matematičeskie trudy
PY  - 2017
SP  - 81
EP  - 96
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2017_20_1_a4/
LA  - ru
ID  - MT_2017_20_1_a4
ER  - 
%0 Journal Article
%A A. V. Greshnov
%T $(q_1,q_2)$-quasimetrics bi-Lipschitz equivalent to $1$-quasimetrics
%J Matematičeskie trudy
%D 2017
%P 81-96
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2017_20_1_a4/
%G ru
%F MT_2017_20_1_a4
A. V. Greshnov. $(q_1,q_2)$-quasimetrics bi-Lipschitz equivalent to $1$-quasimetrics. Matematičeskie trudy, Tome 20 (2017) no. 1, pp. 81-96. http://geodesic.mathdoc.fr/item/MT_2017_20_1_a4/

[1] Aleksandrov A. D., Vnutrennyaya geometriya vypuklykh poverkhnostei, GITTL, M.–L., 1948

[2] Arutyunov A. V., Greshnov A. V., “Teoriya $(q_1,q_2)$-kvazimetricheskikh prostranstv i tochki sovpadeniya”, Dokl. RAN, 469:5 (2016), 527–531 | DOI | Zbl

[3] Arutyunov A. V., Greshnov A. V., “Teoriya $(q_1,q_2)$-kvazimetricheskikh prostranstv. Nakryvayuschie otobrazheniya i tochki sovpadeniya”, Izvestiya RAN, 2017 (to appear)

[4] Vodopyanov S. K., Greshnov A. V., “O differentsiruemosti otobrazhenii prostranstv Karno–Karateodori”, Dokl. RAN, 389:5 (2003), 592–596 | Zbl

[5] Greshnov A. V., “Lokalnaya approksimatsiya ravnomerno regulyarnykh kvaziprostranstv Karno–Karateodori ikh kasatelnymi konusami”, Sib. matem. zhurn., 48:2 (2007), 290–312 | Zbl

[6] Greshnov A. V., “Dokazatelstvo teoremy Gromova ob odnorodnoi nilpotentnoi approksimatsii dlya vektornykh polei klassa $C^1$”, Matem. tr., 15:2 (2012), 72–88 | Zbl

[7] Greshnov A. V., “Geometriya $cc$-sharov i konstanty v teoreme Ball-Box na gruppalgebrakh Geizenberga”, Sib. matem. zhurn., 55:5 (2014), 1040–1058

[8] Greshnov A. V., Tryamkin M. V., “Tochnye znacheniya konstant v obobschennom neravenstve treugolnika dlya nekotorykh $(1,q_2)$-kvazimetrik na kanonicheskikh gruppakh Karno”, Matem. zametki, 98:4 (2015), 635–639 | DOI | Zbl

[9] Selivanova S. V., “Kasatelnyi konus k kvazimetricheskomu prostranstvu s rastyazheniyami”, Sib. matem. zhurn., 51:2 (2010), 388–403 | Zbl

[10] Alvarado R., Mitrea M., Hardy Spaces on Ahlfors-Regular Quasi Metric Spaces: A Sharp Theory, Lecture Notes in Math., 2142, Springer, Heidelberg, 2015 | DOI | MR | Zbl

[11] Arutyunov A. V., Greshnov A. V., Lokutsievskii L. V., Storojuk K. V., “Topological and geometrical properties of spaces with symmetric and nonsymmetric $f$-quasimetrics”, Topology Appl., 221 (2017), 178–194 | DOI | MR

[12] Basalaev S. G., Vodopyanov S. K., “Approximate differentiability of mappings of Carnot–Carathéodory spaces”, Eurasian Math. J., 4:2 (2013), 10–48 | MR | Zbl

[13] Frink A. H., “Distance functions and the metrization problem”, Bull. Amer. Math. Soc., 43 (1937), 133–142 | DOI | MR

[14] Goubault-Larrecq J., Non-Hausdorff Topology and Domain Theory, Cambridge Univ. Press, Cambridge, 2013 | MR | Zbl

[15] Gromov M., “Carnot–Carathéodory spaces seen from within”, Sub-Riemannian Geometry, Birkhäuser, Basel, 1996, 79–323 | DOI | MR | Zbl

[16] Heinonen J., Lectures on Analysis on Metric Spaces, Springer-Verlag, New York, NY, 2001 | MR | Zbl

[17] Karmanova M., Vodop'yanov S., “Geometry of Carnot–Carathéodory spaces, differentiability, coarea and area formulas”, Analysis and Mathematical Physics, Trends Math., Birkhäuser, Basel, 2009, 233–335 | MR | Zbl

[18] Mitchell J., “On Carnot–Carathéodory metrics”, J. Differential Geom., 21 (1985), 35–45 | DOI | MR | Zbl

[19] Nagel A., Stein E. M., Wainger S., “Balls and metrics defined by vector fields. I: Basic properties”, Acta Math., 155:1–2 (1985), 103–147 | DOI | MR | Zbl

[20] Niemytzki V., “Über die Axiome des metrischen Raumes”, Math. Ann., 104 (1931), 666–671 | DOI | MR

[21] Schrëder V., “Quasi-metric and metric spaces”, Conform. Geom. Dyn., 10 (2006), 355–360 | DOI | MR

[22] Stein E. M., Harmonic Analysis: Real-Variables Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, Princeton, 1993 | MR

[23] Wilson W. A., “On quasi-metric spaces”, Amer. J. Math., 53:3 (1931), 675–684 | DOI | MR