Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MT_2017_20_1_a4, author = {A. V. Greshnov}, title = {$(q_1,q_2)$-quasimetrics {bi-Lipschitz} equivalent to $1$-quasimetrics}, journal = {Matemati\v{c}eskie trudy}, pages = {81--96}, publisher = {mathdoc}, volume = {20}, number = {1}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MT_2017_20_1_a4/} }
A. V. Greshnov. $(q_1,q_2)$-quasimetrics bi-Lipschitz equivalent to $1$-quasimetrics. Matematičeskie trudy, Tome 20 (2017) no. 1, pp. 81-96. http://geodesic.mathdoc.fr/item/MT_2017_20_1_a4/
[1] Aleksandrov A. D., Vnutrennyaya geometriya vypuklykh poverkhnostei, GITTL, M.–L., 1948
[2] Arutyunov A. V., Greshnov A. V., “Teoriya $(q_1,q_2)$-kvazimetricheskikh prostranstv i tochki sovpadeniya”, Dokl. RAN, 469:5 (2016), 527–531 | DOI | Zbl
[3] Arutyunov A. V., Greshnov A. V., “Teoriya $(q_1,q_2)$-kvazimetricheskikh prostranstv. Nakryvayuschie otobrazheniya i tochki sovpadeniya”, Izvestiya RAN, 2017 (to appear)
[4] Vodopyanov S. K., Greshnov A. V., “O differentsiruemosti otobrazhenii prostranstv Karno–Karateodori”, Dokl. RAN, 389:5 (2003), 592–596 | Zbl
[5] Greshnov A. V., “Lokalnaya approksimatsiya ravnomerno regulyarnykh kvaziprostranstv Karno–Karateodori ikh kasatelnymi konusami”, Sib. matem. zhurn., 48:2 (2007), 290–312 | Zbl
[6] Greshnov A. V., “Dokazatelstvo teoremy Gromova ob odnorodnoi nilpotentnoi approksimatsii dlya vektornykh polei klassa $C^1$”, Matem. tr., 15:2 (2012), 72–88 | Zbl
[7] Greshnov A. V., “Geometriya $cc$-sharov i konstanty v teoreme Ball-Box na gruppalgebrakh Geizenberga”, Sib. matem. zhurn., 55:5 (2014), 1040–1058
[8] Greshnov A. V., Tryamkin M. V., “Tochnye znacheniya konstant v obobschennom neravenstve treugolnika dlya nekotorykh $(1,q_2)$-kvazimetrik na kanonicheskikh gruppakh Karno”, Matem. zametki, 98:4 (2015), 635–639 | DOI | Zbl
[9] Selivanova S. V., “Kasatelnyi konus k kvazimetricheskomu prostranstvu s rastyazheniyami”, Sib. matem. zhurn., 51:2 (2010), 388–403 | Zbl
[10] Alvarado R., Mitrea M., Hardy Spaces on Ahlfors-Regular Quasi Metric Spaces: A Sharp Theory, Lecture Notes in Math., 2142, Springer, Heidelberg, 2015 | DOI | MR | Zbl
[11] Arutyunov A. V., Greshnov A. V., Lokutsievskii L. V., Storojuk K. V., “Topological and geometrical properties of spaces with symmetric and nonsymmetric $f$-quasimetrics”, Topology Appl., 221 (2017), 178–194 | DOI | MR
[12] Basalaev S. G., Vodopyanov S. K., “Approximate differentiability of mappings of Carnot–Carathéodory spaces”, Eurasian Math. J., 4:2 (2013), 10–48 | MR | Zbl
[13] Frink A. H., “Distance functions and the metrization problem”, Bull. Amer. Math. Soc., 43 (1937), 133–142 | DOI | MR
[14] Goubault-Larrecq J., Non-Hausdorff Topology and Domain Theory, Cambridge Univ. Press, Cambridge, 2013 | MR | Zbl
[15] Gromov M., “Carnot–Carathéodory spaces seen from within”, Sub-Riemannian Geometry, Birkhäuser, Basel, 1996, 79–323 | DOI | MR | Zbl
[16] Heinonen J., Lectures on Analysis on Metric Spaces, Springer-Verlag, New York, NY, 2001 | MR | Zbl
[17] Karmanova M., Vodop'yanov S., “Geometry of Carnot–Carathéodory spaces, differentiability, coarea and area formulas”, Analysis and Mathematical Physics, Trends Math., Birkhäuser, Basel, 2009, 233–335 | MR | Zbl
[18] Mitchell J., “On Carnot–Carathéodory metrics”, J. Differential Geom., 21 (1985), 35–45 | DOI | MR | Zbl
[19] Nagel A., Stein E. M., Wainger S., “Balls and metrics defined by vector fields. I: Basic properties”, Acta Math., 155:1–2 (1985), 103–147 | DOI | MR | Zbl
[20] Niemytzki V., “Über die Axiome des metrischen Raumes”, Math. Ann., 104 (1931), 666–671 | DOI | MR
[21] Schrëder V., “Quasi-metric and metric spaces”, Conform. Geom. Dyn., 10 (2006), 355–360 | DOI | MR
[22] Stein E. M., Harmonic Analysis: Real-Variables Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, Princeton, 1993 | MR
[23] Wilson W. A., “On quasi-metric spaces”, Amer. J. Math., 53:3 (1931), 675–684 | DOI | MR