On Jamet's estimates for the finite element method with interpolation at uniform nodes of a simplex
Matematičeskie trudy, Tome 20 (2017) no. 1, pp. 43-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

We suggest a new geometric characteristic of a simplex. This characteristic tends to zero together with the characteristic introduced by Jamet in 1976. Jamet's characteristic was used in upper estimates for the error of approximation of the derivatives of a function on a simplex by the corresponding derivatives of the polynomial interpolating the values of the function at uniform nodes of the simplex. The use of our characteristic for controlling the form of an element of a triangulation allows us to perform a small finite number of operations. We present an example of a function with lower estimates for approximation of the uniform norms of the derivatives by the corresponding derivatives of the Lagrange interpolating polynomial of degree $n$. This example shows that, for a broad class of $d$\@simplices, Jamet's estimates cannot be improved on the set of functions under consideration. On the other hand, for $d=3$ and $n=1$, we present an example showing that, in general, Jamet's estimates can be improved.
@article{MT_2017_20_1_a2,
     author = {N. V. Baǐdakova},
     title = {On {Jamet's} estimates for the finite element method with interpolation at uniform nodes of a simplex},
     journal = {Matemati\v{c}eskie trudy},
     pages = {43--74},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2017_20_1_a2/}
}
TY  - JOUR
AU  - N. V. Baǐdakova
TI  - On Jamet's estimates for the finite element method with interpolation at uniform nodes of a simplex
JO  - Matematičeskie trudy
PY  - 2017
SP  - 43
EP  - 74
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2017_20_1_a2/
LA  - ru
ID  - MT_2017_20_1_a2
ER  - 
%0 Journal Article
%A N. V. Baǐdakova
%T On Jamet's estimates for the finite element method with interpolation at uniform nodes of a simplex
%J Matematičeskie trudy
%D 2017
%P 43-74
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2017_20_1_a2/
%G ru
%F MT_2017_20_1_a2
N. V. Baǐdakova. On Jamet's estimates for the finite element method with interpolation at uniform nodes of a simplex. Matematičeskie trudy, Tome 20 (2017) no. 1, pp. 43-74. http://geodesic.mathdoc.fr/item/MT_2017_20_1_a2/

[1] Aleksandrov P. S., Lektsii po analiticheskoi geometrii, popolnennye neobkhodimymi svedeniyami iz algebry s prilozheniem sobraniya zadach, snabzhennykh resheniyami, sostavlennogo A. S. Parkhomenko, Nauka, M., 1968 | MR

[2] Baidakova N. V., “Vliyanie gladkosti na pogreshnost approksimatsii proizvodnykh pri lokalnoi interpolyatsii na triangulyatsiyakh”, Tr. IMM UrO RAN, 17, no. 3, 2011, 83–97

[3] Berzhe M., Geometriya, v. 1, Mir, M., 1984 | MR

[4] Klyachin V. A., “Modifitsirovannoe uslovie pustoi sfery Delone v zadache approksimatsii gradienta”, Izv. RAN. Ser. matem., 80:3 (2016), 95–102 | DOI | MR | Zbl

[5] Subbotin Yu. N., “Zavisimost otsenok mnogomernoi kusochno polinomialnoi approksimatsii ot geometricheskikh kharakteristik triangulyatsii”, Tr. MIAN SSSR, 189, 1989, 117–137

[6] Acosta G., Apel T., Duran R. G., Lombardi A. L., “Error estimates for Raviart–Thomas interpolation of any order on anisotropic tetrahedra”, Math. Comput., 80:273 (2011), 141–163 | DOI | MR | Zbl

[7] Acosta G., Duran R. G., “The maximum angle condition for mixed and nonconforming elements: Application to the Stokes equations”, SIAM J. Numer. Anal., 37:1 (1999), 18–36 | DOI | MR | Zbl

[8] Apel T., Anisotropic Finite Elements: Local Estimates and Applications, Advances in Numerical Mathematics, Teubner, Stuttgart, 1999, 261 pp. | MR | Zbl

[9] Babuška I., Aziz A. K., “On the angle condition in the finite element method”, SIAM J. Numer. Anal., 13:2 (1976), 214–226 | DOI | MR | Zbl

[10] Brandts J., Hannukainen A., Korotov S., Křížek M., “On angle conditions in the finite element method”, SeMA J., 56 (2011), 81–95 | DOI | MR | Zbl

[11] Ciarlet P. G., Raviart P. A., “General Lagrange and Hermite interpolation in $R^n$ with applications to finite element methods”, Arch. Rational Mech. Anal., 46:3 (1972), 177–199 | DOI | MR | Zbl

[12] Jamet P., “Estimations d'erreur pour des éléments finis droits presque dégénérées”, RFAIRO Anal. Numér., 10:1 (1976), 43–60 | MR | Zbl

[13] Křížek M., “On the maximum angle condition for linear tetrahedral elements”, SIAM J. Numer. Anal., 29:2 (1992), 513–520 | DOI | MR

[14] Rand A., “Average interpolation under the maximum angle condition”, SIAM J. Numer. Anal., 50:5 (2012), 2538–2559 | DOI | MR | Zbl

[15] Synge J. L., The Hypercircle in Mathematical Physics, Cambridge Univ. Press, Cambridge, 1957 | MR | Zbl