Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MT_2017_20_1_a2, author = {N. V. Baǐdakova}, title = {On {Jamet's} estimates for the finite element method with interpolation at uniform nodes of a simplex}, journal = {Matemati\v{c}eskie trudy}, pages = {43--74}, publisher = {mathdoc}, volume = {20}, number = {1}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MT_2017_20_1_a2/} }
TY - JOUR AU - N. V. Baǐdakova TI - On Jamet's estimates for the finite element method with interpolation at uniform nodes of a simplex JO - Matematičeskie trudy PY - 2017 SP - 43 EP - 74 VL - 20 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MT_2017_20_1_a2/ LA - ru ID - MT_2017_20_1_a2 ER -
N. V. Baǐdakova. On Jamet's estimates for the finite element method with interpolation at uniform nodes of a simplex. Matematičeskie trudy, Tome 20 (2017) no. 1, pp. 43-74. http://geodesic.mathdoc.fr/item/MT_2017_20_1_a2/
[1] Aleksandrov P. S., Lektsii po analiticheskoi geometrii, popolnennye neobkhodimymi svedeniyami iz algebry s prilozheniem sobraniya zadach, snabzhennykh resheniyami, sostavlennogo A. S. Parkhomenko, Nauka, M., 1968 | MR
[2] Baidakova N. V., “Vliyanie gladkosti na pogreshnost approksimatsii proizvodnykh pri lokalnoi interpolyatsii na triangulyatsiyakh”, Tr. IMM UrO RAN, 17, no. 3, 2011, 83–97
[3] Berzhe M., Geometriya, v. 1, Mir, M., 1984 | MR
[4] Klyachin V. A., “Modifitsirovannoe uslovie pustoi sfery Delone v zadache approksimatsii gradienta”, Izv. RAN. Ser. matem., 80:3 (2016), 95–102 | DOI | MR | Zbl
[5] Subbotin Yu. N., “Zavisimost otsenok mnogomernoi kusochno polinomialnoi approksimatsii ot geometricheskikh kharakteristik triangulyatsii”, Tr. MIAN SSSR, 189, 1989, 117–137
[6] Acosta G., Apel T., Duran R. G., Lombardi A. L., “Error estimates for Raviart–Thomas interpolation of any order on anisotropic tetrahedra”, Math. Comput., 80:273 (2011), 141–163 | DOI | MR | Zbl
[7] Acosta G., Duran R. G., “The maximum angle condition for mixed and nonconforming elements: Application to the Stokes equations”, SIAM J. Numer. Anal., 37:1 (1999), 18–36 | DOI | MR | Zbl
[8] Apel T., Anisotropic Finite Elements: Local Estimates and Applications, Advances in Numerical Mathematics, Teubner, Stuttgart, 1999, 261 pp. | MR | Zbl
[9] Babuška I., Aziz A. K., “On the angle condition in the finite element method”, SIAM J. Numer. Anal., 13:2 (1976), 214–226 | DOI | MR | Zbl
[10] Brandts J., Hannukainen A., Korotov S., Křížek M., “On angle conditions in the finite element method”, SeMA J., 56 (2011), 81–95 | DOI | MR | Zbl
[11] Ciarlet P. G., Raviart P. A., “General Lagrange and Hermite interpolation in $R^n$ with applications to finite element methods”, Arch. Rational Mech. Anal., 46:3 (1972), 177–199 | DOI | MR | Zbl
[12] Jamet P., “Estimations d'erreur pour des éléments finis droits presque dégénérées”, RFAIRO Anal. Numér., 10:1 (1976), 43–60 | MR | Zbl
[13] Křížek M., “On the maximum angle condition for linear tetrahedral elements”, SIAM J. Numer. Anal., 29:2 (1992), 513–520 | DOI | MR
[14] Rand A., “Average interpolation under the maximum angle condition”, SIAM J. Numer. Anal., 50:5 (2012), 2538–2559 | DOI | MR | Zbl
[15] Synge J. L., The Hypercircle in Mathematical Physics, Cambridge Univ. Press, Cambridge, 1957 | MR | Zbl