Isometries and Hermitian operators on complex symmetric sequence spaces
Matematičeskie trudy, Tome 20 (2017) no. 1, pp. 21-42
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a complex symmetric sequence space $E$
that possesses the Fatou property and is different from $l_2$.
We prove that, for every surjective linear isometry $V$ on $E$,
there exist $\lambda_n\in\mathbb C$ with $|\lambda_n|=1$
and a bijective mapping $\pi$ on the set $\mathbb N$
of natural numbers such that
$$
V\big(\{\xi_n\}_{n\in\mathbb N}
\big)=\big\{\lambda_n\xi_{\pi(n)}
\big\}_{n\in\mathbb N}
$$
for every $\{\xi_n\}_{n\in\mathbb N}\in E$.
@article{MT_2017_20_1_a1,
author = {B. R. Aminov and V. I. Chilin},
title = {Isometries and {Hermitian} operators on complex symmetric sequence spaces},
journal = {Matemati\v{c}eskie trudy},
pages = {21--42},
publisher = {mathdoc},
volume = {20},
number = {1},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MT_2017_20_1_a1/}
}
B. R. Aminov; V. I. Chilin. Isometries and Hermitian operators on complex symmetric sequence spaces. Matematičeskie trudy, Tome 20 (2017) no. 1, pp. 21-42. http://geodesic.mathdoc.fr/item/MT_2017_20_1_a1/