Isometries and Hermitian operators on complex symmetric sequence spaces
Matematičeskie trudy, Tome 20 (2017) no. 1, pp. 21-42.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a complex symmetric sequence space $E$ that possesses the Fatou property and is different from $l_2$. We prove that, for every surjective linear isometry $V$ on $E$, there exist $\lambda_n\in\mathbb C$ with $|\lambda_n|=1$ and a bijective mapping $\pi$ on the set $\mathbb N$ of natural numbers such that $$ V\big(\{\xi_n\}_{n\in\mathbb N} \big)=\big\{\lambda_n\xi_{\pi(n)} \big\}_{n\in\mathbb N} $$ for every $\{\xi_n\}_{n\in\mathbb N}\in E$.
@article{MT_2017_20_1_a1,
     author = {B. R. Aminov and V. I. Chilin},
     title = {Isometries and {Hermitian} operators on complex symmetric sequence spaces},
     journal = {Matemati\v{c}eskie trudy},
     pages = {21--42},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2017_20_1_a1/}
}
TY  - JOUR
AU  - B. R. Aminov
AU  - V. I. Chilin
TI  - Isometries and Hermitian operators on complex symmetric sequence spaces
JO  - Matematičeskie trudy
PY  - 2017
SP  - 21
EP  - 42
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2017_20_1_a1/
LA  - ru
ID  - MT_2017_20_1_a1
ER  - 
%0 Journal Article
%A B. R. Aminov
%A V. I. Chilin
%T Isometries and Hermitian operators on complex symmetric sequence spaces
%J Matematičeskie trudy
%D 2017
%P 21-42
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2017_20_1_a1/
%G ru
%F MT_2017_20_1_a1
B. R. Aminov; V. I. Chilin. Isometries and Hermitian operators on complex symmetric sequence spaces. Matematičeskie trudy, Tome 20 (2017) no. 1, pp. 21-42. http://geodesic.mathdoc.fr/item/MT_2017_20_1_a1/

[1] Banakh S., Teoriya lineinykh operatsii, Izd-vo NITs «Regulyarnaya i khaoticheskaya dinamika», Izhevsk, 2001

[2] Braverman M. Sh., Semenov E. M., “Izometrii simmetrichnykh prostranstv”, Dokl. AN SSSR, 217:2 (1974), 257–259 | Zbl

[3] Braverman M. Sh., Semenov E. M., “Izometrii simmetrichnykh prostranstv”, Trudy NII Matem. VGU, 17 (1975), 7–18 | Zbl

[4] Diksme Zh., $C^*$-algebry i ikh predstavleniya, Nauka, M., 1974

[5] Zaidenberg M. G., “K izometricheskoi klassifikatsii simmetrichnykh prostranstv”, Dokl. AN SSSR, 234:2 (1977), 283–286 | Zbl

[6] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1977

[7] Kelli D. L., Obschaya topologiya, Nauka, M., 1968

[8] Krein S. G., Petunin Yu. I., Semenov E. M., Interpolyatsiya lineinykh operatorov, Nauka, M., 1978

[9] Polia G., Sege G., Zadachi i teoremy iz analiza, v. 1, Nauka, M., 1978

[10] Arazy J., “Isometries of complex symmetric sequence spaces”, Math. Z., 188 (1985), 427–431 | DOI | MR

[11] Bonsall F. F., Duncan J., Numerical Ranges of Operators on Normed Spaces and of Elements of Normed Algebras, London Math. Soc. Lecture Notes Ser. 2, Cambridge Univ. Press, Cambridge, 1971 | MR | Zbl

[12] Fleming R. J., Jamison J. E., Isometries on Banach Spaces: Function Spaces, Chapman Hall/CRC, Boca Raton, FL, 2003 | MR | Zbl

[13] Godefroy G., Kalton N. J., “The ball topology and its applications”, Contemp. Math., 85, 1989, 195–237 | DOI | MR | Zbl

[14] James R. C., “Orthogonality and linear functionals in normed linear spaces”, Trans. Amer. Math. Soc., 61 (1947), 285–292 | DOI | MR | Zbl

[15] Kalton N. J., Randrianantoanina B., “Surjective isometries on rearrangement-invariant spaces”, Quart. J. Math. Oxford Ser. (2), 45:179 (1994), 301–327 | DOI | MR | Zbl

[16] Kothe G., Topological Vector Spaces, v. I, Springer-Verlag, Berlin–Heidelberg–New York, 1969 | MR | Zbl

[17] Lamperti J., “On the isometries of certain function-spaces”, Pacific J. Math., 8 (1958), 459–466 | DOI | MR | Zbl

[18] Lumer G., “On the isometries of reflexive Orlicz spaces”, Ann. Inst. Fourier (Grenoble), 13:1 (1963), 99–109 | DOI | MR | Zbl

[19] Luxemburg W. A. J., Zaanen A. C., “Compactness of integral operators in Banach function spaces”, Math. Ann., 149 (1963), 150–180 | DOI | MR | Zbl

[20] Molnár L., “2-local isometries of some operator algebras”, Proc. Edinburgh Math. Soc. (2), 45:2 (2002), 349–352 | MR | Zbl

[21] Sourour A. R., “Isometries of norm ideals of compact operators”, J. Funct. Anal., 43 (1981), 69–77 | DOI | MR | Zbl

[22] Wojtaszczyk P., Banach Spaces for Analysts, Cambridge Studies in Advanced Mathematics, 25, Cambridge Univ. Press, Cambridge etc., 1991 | MR | Zbl

[23] Zaidenberg M. G., “A representation of isometries on function spaces”, Mat. Fiz. Anal. Geom., 4:3 (1997), 339–347 | MR | Zbl