On computable estimates for accuracy of approximation for the Bartlett--Nanda--Pillai statistic
Matematičeskie trudy, Tome 19 (2016) no. 2, pp. 109-118.

Voir la notice de l'article provenant de la source Math-Net.Ru

For the Bartlett-Nanda-Pillai statistic, we find computable estimates for accuracy of approximation, i.e., we describe explicitly the dependence on all parameters of the distributions that occur in the inequalities. For the other two classical statistics traditionally used in multivariate analysis of variance, i.e., the likelihood-ratio and Lawley–Hotelling statistics, similar computable estimates were found earlier.
@article{MT_2016_19_2_a3,
     author = {A. A. Lipatev and V. V. Ulyanov},
     title = {On computable estimates for accuracy of approximation for the {Bartlett--Nanda--Pillai} statistic},
     journal = {Matemati\v{c}eskie trudy},
     pages = {109--118},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2016_19_2_a3/}
}
TY  - JOUR
AU  - A. A. Lipatev
AU  - V. V. Ulyanov
TI  - On computable estimates for accuracy of approximation for the Bartlett--Nanda--Pillai statistic
JO  - Matematičeskie trudy
PY  - 2016
SP  - 109
EP  - 118
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2016_19_2_a3/
LA  - ru
ID  - MT_2016_19_2_a3
ER  - 
%0 Journal Article
%A A. A. Lipatev
%A V. V. Ulyanov
%T On computable estimates for accuracy of approximation for the Bartlett--Nanda--Pillai statistic
%J Matematičeskie trudy
%D 2016
%P 109-118
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2016_19_2_a3/
%G ru
%F MT_2016_19_2_a3
A. A. Lipatev; V. V. Ulyanov. On computable estimates for accuracy of approximation for the Bartlett--Nanda--Pillai statistic. Matematičeskie trudy, Tome 19 (2016) no. 2, pp. 109-118. http://geodesic.mathdoc.fr/item/MT_2016_19_2_a3/

[1] Lipatev A. A., Ulyanov V. V., “O vychislimykh otsenkakh dlya statistiki Bartletta–Nanda–Pillai”, Obozrenie prikl. i prom. matem., 23:1 (2016), 51–53

[2] Abramowitz M., Stegun I. A. (eds.), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Nat. Bureau of Standards Appl. Math. Ser., 55, U.S. Government Printing Office, Washington, D.C., 1964 | MR

[3] Anderson T. W., An Introduction to Multivariate Statistical Analysis, 3rd ed., Wiley, New York, 2003 | MR | Zbl

[4] Fujikoshi Y., Ulyanov V. V., “Error bounds for asymptotic expansions of Wilks' lambda distribution”, J. Multivariate Anal., 97:9 (2006), 1941–1957 | DOI | MR | Zbl

[5] Fujikoshi Y., Ulyanov V. V., Shimizu R., “$L_1$-norm error bounds for asymptotic expansions of multivariate scale mixtures and their applications to Hotelling's generalized $T_0^2$”, J. Multivariate Anal., 96:1 (2005), 1–19 | DOI | MR | Zbl

[6] Fujikoshi Y., Ulyanov V. V., Shimizu R., Multivariate Statistics. High Dimensional and Large-Sample Approximations, Wiley Series in Probability and Statistics, John Wiley Sons, Hoboken, NJ, 2010 | DOI | MR | Zbl

[7] Harrar S. W., Bathke A. C., “A nonparametric version of the Bartlett–Nanda–Pillai multivariate test. Asymptotics, approximations, and applications”, Amer. J. Math. Management Sci., 28:3–4 (2008), 309–335 | MR | Zbl

[8] Nanda D. N., “Distribution of the sum of roots of a determinantal equation under a certain condition”, Ann. Math. Stat., 21:3 (1950), 432–439 | DOI | MR | Zbl

[9] Ulyanov V. V., Wakaki H., Fujikoshi Y., “Berry–Esseen bound for high dimensional asymptotic approximation of Wilks' lambda distribution”, Stat. Probab. Lett., 76:12 (2006), 1191–1200 | DOI | MR | Zbl

[10] Wakaki H., Fujikoshi Y., Ulyanov V. V., “Asymptotic expansions of the distributions of MANOVA test statistics when the dimension is large”, Hiroshima Math. J., 44:3 (2014), 247–259 | MR | Zbl

[11] Wallace D. L., “Bounds on normal approximations to Student's and the chi-square distributions”, Ann. Math. Stat., 30:4 (1959), 1121–1130 | DOI | MR | Zbl