The spectrum of the Laplace operator on connected compact simple Lie groups of rank four
Matematičeskie trudy, Tome 19 (2016) no. 2, pp. 42-85

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present article, we explicitly compute the spectrum of the Laplace operator on smooth real-valued and complex-valued functions on connected compact simple Lie groups of rank four with a bi-invariant Riemannian metrics that correspond to the root systems $B_4$, $C_4$, and $D_4$. We also find a connection between the obtained formulas, number theory, and integral quadratic forms in two, three, and four variables.
@article{MT_2016_19_2_a1,
     author = {I. A. Zubareva},
     title = {The spectrum of the {Laplace} operator on connected compact simple {Lie} groups of rank four},
     journal = {Matemati\v{c}eskie trudy},
     pages = {42--85},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2016_19_2_a1/}
}
TY  - JOUR
AU  - I. A. Zubareva
TI  - The spectrum of the Laplace operator on connected compact simple Lie groups of rank four
JO  - Matematičeskie trudy
PY  - 2016
SP  - 42
EP  - 85
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2016_19_2_a1/
LA  - ru
ID  - MT_2016_19_2_a1
ER  - 
%0 Journal Article
%A I. A. Zubareva
%T The spectrum of the Laplace operator on connected compact simple Lie groups of rank four
%J Matematičeskie trudy
%D 2016
%P 42-85
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2016_19_2_a1/
%G ru
%F MT_2016_19_2_a1
I. A. Zubareva. The spectrum of the Laplace operator on connected compact simple Lie groups of rank four. Matematičeskie trudy, Tome 19 (2016) no. 2, pp. 42-85. http://geodesic.mathdoc.fr/item/MT_2016_19_2_a1/