The spectrum of the Laplace operator on connected compact simple Lie groups of rank four
Matematičeskie trudy, Tome 19 (2016) no. 2, pp. 42-85.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present article, we explicitly compute the spectrum of the Laplace operator on smooth real-valued and complex-valued functions on connected compact simple Lie groups of rank four with a bi-invariant Riemannian metrics that correspond to the root systems $B_4$, $C_4$, and $D_4$. We also find a connection between the obtained formulas, number theory, and integral quadratic forms in two, three, and four variables.
@article{MT_2016_19_2_a1,
     author = {I. A. Zubareva},
     title = {The spectrum of the {Laplace} operator on connected compact simple {Lie} groups of rank four},
     journal = {Matemati\v{c}eskie trudy},
     pages = {42--85},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2016_19_2_a1/}
}
TY  - JOUR
AU  - I. A. Zubareva
TI  - The spectrum of the Laplace operator on connected compact simple Lie groups of rank four
JO  - Matematičeskie trudy
PY  - 2016
SP  - 42
EP  - 85
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2016_19_2_a1/
LA  - ru
ID  - MT_2016_19_2_a1
ER  - 
%0 Journal Article
%A I. A. Zubareva
%T The spectrum of the Laplace operator on connected compact simple Lie groups of rank four
%J Matematičeskie trudy
%D 2016
%P 42-85
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2016_19_2_a1/
%G ru
%F MT_2016_19_2_a1
I. A. Zubareva. The spectrum of the Laplace operator on connected compact simple Lie groups of rank four. Matematičeskie trudy, Tome 19 (2016) no. 2, pp. 42-85. http://geodesic.mathdoc.fr/item/MT_2016_19_2_a1/

[1] Adams Dzh., Lektsii po gruppam Li, Nauka, M., 1979 | MR

[2] Berestovskii V. N., Svirkin V. M., “Operator Laplasa na odnorodnykh normalnykh rimanovykh mnogoobraziyakh”, Matem. tr., 12:2 (2009), 3–40 | MR

[3] Berestovskii V. N., Svirkin V. M., “Spektr operatora Laplasa na kompaktnykh odnosvyaznykh prostykh gruppakh Li ranga dva”, Fiziko-matematicheskie nauki, Uchen. zap. Kazan. gos. un-ta. Ser. Fiz.-matem. nauki, 151, no. 4, 2009, 15–35 | Zbl

[4] Berestovskii V. N., Zubareva I. A., Svirkin V. M., “Spektr operatora Laplasa na svyaznykh kompaktnykh prostykh gruppakh Li ranga tri”, Matem. tr., 19:1 (2016), 3–45 | MR | Zbl

[5] Burbaki N., Gruppy i algebry Li, Gl. IV–VI, Mir, M., 1972

[6] Bukhshtab A. A., Teoriya chisel, Gos. uch.-ped. izdat., M., 1960

[7] Venkov B. A., Elementarnaya teoriya chisel, Ob'ed. nauch.-tekhn. izd-vo NKTP SSSR, M.–L., 1937

[8] Devenport G., Vysshaya arifmetika. Vvedenie v teoriyu chisel, Nauka, M., 1965

[9] Svirkin V. M., “Spektr operatora Laplasa svyaznykh kompaktnykh prostykh grupp Li ranga odin i dva”, Fiziko-matematicheskie nauki, Uchen. zap. Kazan. gos. un-ta. Ser. Fiz.-matem. nauki, 152, no. 1, 2010, 219–234 | MR | Zbl

[10] Conway J. H., The Sensual Quadratic Form, The Carus Mathematical Monographs, 26, The Mathematical Association of America, Washington, DC, 1997 | MR | Zbl