Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MT_2016_19_2_a1, author = {I. A. Zubareva}, title = {The spectrum of the {Laplace} operator on connected compact simple {Lie} groups of rank four}, journal = {Matemati\v{c}eskie trudy}, pages = {42--85}, publisher = {mathdoc}, volume = {19}, number = {2}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MT_2016_19_2_a1/} }
I. A. Zubareva. The spectrum of the Laplace operator on connected compact simple Lie groups of rank four. Matematičeskie trudy, Tome 19 (2016) no. 2, pp. 42-85. http://geodesic.mathdoc.fr/item/MT_2016_19_2_a1/
[1] Adams Dzh., Lektsii po gruppam Li, Nauka, M., 1979 | MR
[2] Berestovskii V. N., Svirkin V. M., “Operator Laplasa na odnorodnykh normalnykh rimanovykh mnogoobraziyakh”, Matem. tr., 12:2 (2009), 3–40 | MR
[3] Berestovskii V. N., Svirkin V. M., “Spektr operatora Laplasa na kompaktnykh odnosvyaznykh prostykh gruppakh Li ranga dva”, Fiziko-matematicheskie nauki, Uchen. zap. Kazan. gos. un-ta. Ser. Fiz.-matem. nauki, 151, no. 4, 2009, 15–35 | Zbl
[4] Berestovskii V. N., Zubareva I. A., Svirkin V. M., “Spektr operatora Laplasa na svyaznykh kompaktnykh prostykh gruppakh Li ranga tri”, Matem. tr., 19:1 (2016), 3–45 | MR | Zbl
[5] Burbaki N., Gruppy i algebry Li, Gl. IV–VI, Mir, M., 1972
[6] Bukhshtab A. A., Teoriya chisel, Gos. uch.-ped. izdat., M., 1960
[7] Venkov B. A., Elementarnaya teoriya chisel, Ob'ed. nauch.-tekhn. izd-vo NKTP SSSR, M.–L., 1937
[8] Devenport G., Vysshaya arifmetika. Vvedenie v teoriyu chisel, Nauka, M., 1965
[9] Svirkin V. M., “Spektr operatora Laplasa svyaznykh kompaktnykh prostykh grupp Li ranga odin i dva”, Fiziko-matematicheskie nauki, Uchen. zap. Kazan. gos. un-ta. Ser. Fiz.-matem. nauki, 152, no. 1, 2010, 219–234 | MR | Zbl
[10] Conway J. H., The Sensual Quadratic Form, The Carus Mathematical Monographs, 26, The Mathematical Association of America, Washington, DC, 1997 | MR | Zbl