Stability of a supersonic flow past a wedge with adjoint weak neutrally stable shock wave
Matematičeskie trudy, Tome 19 (2016) no. 2, pp. 3-41
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the classical problem of a supersonic stationary flow of a nonviscous nonheat-conducting gas in local thermodynamic equilibrium past an infinite plane wedge. Under the Lopatinskiĭ condition on the shock wave (neutral stability), we prove the well-posedness of the linearized mixed problem (the main solution is a weak shock wave), obtain a representation of the classical solution, where, in this case (in contrast to the case of the uniform Lopatinskiĭ condition — an absolutely stable shock wave), plane waves additionally appear in the representation. If the initial data have compact support, the solution reaches the given regime in infinite time.
@article{MT_2016_19_2_a0,
author = {A. M. Blokhin and D. L. Tkachev},
title = {Stability of a supersonic flow past a wedge with adjoint weak neutrally stable shock wave},
journal = {Matemati\v{c}eskie trudy},
pages = {3--41},
publisher = {mathdoc},
volume = {19},
number = {2},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MT_2016_19_2_a0/}
}
TY - JOUR AU - A. M. Blokhin AU - D. L. Tkachev TI - Stability of a supersonic flow past a wedge with adjoint weak neutrally stable shock wave JO - Matematičeskie trudy PY - 2016 SP - 3 EP - 41 VL - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MT_2016_19_2_a0/ LA - ru ID - MT_2016_19_2_a0 ER -
A. M. Blokhin; D. L. Tkachev. Stability of a supersonic flow past a wedge with adjoint weak neutrally stable shock wave. Matematičeskie trudy, Tome 19 (2016) no. 2, pp. 3-41. http://geodesic.mathdoc.fr/item/MT_2016_19_2_a0/