Stability of a supersonic flow past a wedge with adjoint weak neutrally stable shock wave
Matematičeskie trudy, Tome 19 (2016) no. 2, pp. 3-41

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the classical problem of a supersonic stationary flow of a nonviscous nonheat-conducting gas in local thermodynamic equilibrium past an infinite plane wedge. Under the Lopatinskiĭ­ condition on the shock wave (neutral stability), we prove the well-posedness of the linearized mixed problem (the main solution is a weak shock wave), obtain a representation of the classical solution, where, in this case (in contrast to the case of the uniform Lopatinskiĭ­ condition — an absolutely stable shock wave), plane waves additionally appear in the representation. If the initial data have compact support, the solution reaches the given regime in infinite time.
@article{MT_2016_19_2_a0,
     author = {A. M. Blokhin and D. L. Tkachev},
     title = {Stability of a supersonic flow past a wedge with adjoint weak neutrally stable shock wave},
     journal = {Matemati\v{c}eskie trudy},
     pages = {3--41},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2016_19_2_a0/}
}
TY  - JOUR
AU  - A. M. Blokhin
AU  - D. L. Tkachev
TI  - Stability of a supersonic flow past a wedge with adjoint weak neutrally stable shock wave
JO  - Matematičeskie trudy
PY  - 2016
SP  - 3
EP  - 41
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2016_19_2_a0/
LA  - ru
ID  - MT_2016_19_2_a0
ER  - 
%0 Journal Article
%A A. M. Blokhin
%A D. L. Tkachev
%T Stability of a supersonic flow past a wedge with adjoint weak neutrally stable shock wave
%J Matematičeskie trudy
%D 2016
%P 3-41
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2016_19_2_a0/
%G ru
%F MT_2016_19_2_a0
A. M. Blokhin; D. L. Tkachev. Stability of a supersonic flow past a wedge with adjoint weak neutrally stable shock wave. Matematičeskie trudy, Tome 19 (2016) no. 2, pp. 3-41. http://geodesic.mathdoc.fr/item/MT_2016_19_2_a0/