On some classes of inverse problems of recovering a source function
Matematičeskie trudy, Tome 19 (2016) no. 1, pp. 178-198.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the article we examine the question on solvability, uniqueness, and some qualitative properties of solutions to inverse problems of recovering point sources (the right-hand sides of a special form) in a one-dimensional parabolic equation. The values of a solution at some collection of points are taken as the overdetermination conditions. Examples are exposed that show that the uniqueness fails without additional conditions on the mutual disposition of sources and measurement points.
@article{MT_2016_19_1_a5,
     author = {S. G. Pyatkov and E. I. Safonov},
     title = {On some classes of inverse problems of recovering  a source function},
     journal = {Matemati\v{c}eskie trudy},
     pages = {178--198},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2016_19_1_a5/}
}
TY  - JOUR
AU  - S. G. Pyatkov
AU  - E. I. Safonov
TI  - On some classes of inverse problems of recovering  a source function
JO  - Matematičeskie trudy
PY  - 2016
SP  - 178
EP  - 198
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2016_19_1_a5/
LA  - ru
ID  - MT_2016_19_1_a5
ER  - 
%0 Journal Article
%A S. G. Pyatkov
%A E. I. Safonov
%T On some classes of inverse problems of recovering  a source function
%J Matematičeskie trudy
%D 2016
%P 178-198
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2016_19_1_a5/
%G ru
%F MT_2016_19_1_a5
S. G. Pyatkov; E. I. Safonov. On some classes of inverse problems of recovering  a source function. Matematičeskie trudy, Tome 19 (2016) no. 1, pp. 178-198. http://geodesic.mathdoc.fr/item/MT_2016_19_1_a5/

[1] Agranovich M. S., Vishik M. I., “Ellipticheskie zadachi s parametrom i parabolicheskie zadachi obschego vida”, UMN, 19:3(117) (1964), 53–161 | MR | Zbl

[2] Alifanov O. M., Artyukhov E. A., Nenarokomov A. V., Obratnye zadachi slozhnogo teploobmena, Yanus-K, M., 2009

[3] Kriksin Yu. A., Plyuschev S. N., Samarskaya E. A., Tishkin V. F., “Obratnaya zadacha vosstanovleniya plotnosti istochnika dlya uravneniya konvektsii-diffuzii”, Matem. modelir., 7:11 (1995), 95–108 | MR | Zbl

[4] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967 | MR

[5] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969 | MR

[6] Panasenko A. E., Starchenko A. V., “Chislennoe reshenie nekotorykh obratnykh zadach s razlichnymi tipami istochnikov atmosfernogo zagryazneniya”, Vestn. Tomsk. gos. un-ta. Matem. i mekh., 2008, no. 2(3), 47–55 | MR

[7] Penenko V. V., “Variatsionnye metody usvoeniya dannykh i obratnye zadachi dlya izucheniya atmosfery, okeana i okruzhayuschei sredy”, Sib. zhurn. vychisl. matem., 12:4 (2009), 421–434 | Zbl

[8] Pyatkov S. G., Samkov M. L., “O nekotorykh klassakh koeffitsientnykh obratnykh zadach dlya parabolicheskikh sistem uravnenii”, Matem. tr., 15:1 (2012), 155–177 | MR | Zbl

[9] Alifanov O. M., Inverse Heat Transfer Problems, Springer-Verlag, Berlin–Heidelberg, 1994 | Zbl

[10] Amann H., “Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems”, Function Spaces, Differential Operators and Nonlinear Analysis, Teubner-Texte Math., 133, Teubner, Stuttgart, 1993, 9–126 | DOI | MR | Zbl

[11] Amann H., “Nonautonomous parabolic equations involving measures”, J. Math. Sci. (New York), 130:4 (2005), 4780–4802 | DOI | MR | Zbl

[12] Badia A. El, Ha-Duong T., “Inverse source problem for the heat equation: application to a pollution detection problem”, J. Inverse Ill-Posed Probl., 10:6 (2002), 585–599 | DOI | MR | Zbl

[13] Badia A. El, Ha-Duong T., Hamdi A., “Identification of a point source in a linear advection-dispersion-reaction equation: application to a pollution source problem”, Inverse Problems, 21:3 (2005), 1121–1136 | DOI | MR | Zbl

[14] Badia A. El, Hamdi A., “Inverse source problem in an advection-dispersion-reaction system: application to water pollution”, Inverse Problems, 23 (2007), 2103–2120 | DOI | MR | Zbl

[15] Belov Ya. Ya., Inverse Problems for Parabolic Equations, VSP, Utrecht, 2002

[16] Boano F., Revelli R., Ridolfi L., “Source identification in river pollution problems: a geostatistical approach”, Water Resources Research, 41 (2005), 1–13 | DOI

[17] Deng X., Zhao Y., Zou J., “On linear finite elements for simultaneously recovering source location and intensity”, Int. J. Numer. Anal. Model., 10:3 (2013), 588–602 | MR | Zbl

[18] Fan Y., Li D. G., “Identifying the heat source for the heat equation with convection term”, Int. J. Math. Anal., 3:27 (2009), 1317–1323 | MR | Zbl

[19] Farcas A., Lesnic D., “The boundary-element method for the determination of a heat source dependent on one variable”, J. Engrg. Math., 54:4 (2006), 375–388 | DOI | MR | Zbl

[20] Grisvard P., “Équations différentielles abstraites”, Ann. Sci. École Norm. Sup. (4), 2 (1969), 311–395 | MR | Zbl

[21] Hamdi A., “Identification of point sources in two-dimensional advection-diffusion-reaction equation: application to pollution sources in a river. Stationary case”, Inverse Probl. Sci. Eng., 15:8 (2007), 855–870 | DOI | MR | Zbl

[22] Isakov V., Inverse Problems for Partial Differential Equations, Appl. Math. Sci., 127, Springer, New York, NY, 2006 | MR | Zbl

[23] Ivanchov M., Inverse Problems for Equations of Parabolic Type, Math. Studies. Monograph Series, 10, VNTL Publishers, Lviv, 2003 | MR | Zbl

[24] Ling L., Takeuchi T., “Point sources identification problems for heat equations”, Commun. Comput. Phys., 5:5 (2009), 897–913 | MR

[25] Liu C.-S., Chang C.-W., “A global boundary integral equation method for recovering space-time dependent heat source”, Internat. J. Heat and Mass Transf., 92 (2016), 1034–1040 | DOI

[26] Lushi E., Stockie J. M., “An inverse Gaussian plume approach for estimating atmospheric pollutant emissions from multiple point sources”, Atmospheric Environment, 44:8 (2010), 1097–1107 | DOI

[27] Mamonov A. V., Tsai Y.-H. R., “Point source identification in nonlinear advection-diffusion-reaction systems”, Inverse Problems, 29:3 (2013), arXiv: 1202.2373 | DOI | MR | Zbl

[28] Marchuk G. I., Mathematical Models in Environmental Problems, Studies in Mathematics and its Applications, 16, Elsevier Science Publishers, Amsterdam, 1986 | MR

[29] Murray-Bruce J., Dragotti P. L., “Estimating localized sources of diffusion fields using spatiotemporal sensor measurements”, IEEE Trans. on Signal Processing, 63:12 (2015), 3018–3031 | DOI | MR

[30] Ozisik M. N., Orlande H. R. B., Inverse Heat Transfer, Taylor Francis, New York, 2000

[31] Prilepko A. I., Orlovsky D. G., Vasin I. A., Methods for Solving Inverse Problems in Mathematical Physics, Marcel Dekker, Inc., New York, 1999 | MR

[32] Pyatkov S. G., “On some classes of inverse problems for parabolic equations”, J. Inverse Ill-Posed Probl., 18:8 (2011), 917–934 | DOI | MR

[33] Ridolfi L., Macis M., “Identification of source terms in nonlinear convection diffusion phenomena by sine collocation-interpolation methods”, Math. Comput. Modelling, 26:2 (1997), 69–79 | DOI | MR | Zbl

[34] Saut J.-C., Scheurer B., “Unique continuation for some evolution equations”, J. Differential Equations, 66 (1987), 118–139 | DOI | MR | Zbl

[35] Triebel H., Interpolation Theory. Function Spaces. Differential Operators, VEB Deutscher Verlag der Wissenschaften, Berlin, 1978 | MR

[36] Verdiere N., Joly-Blanchard G., Denis-Vidal L., “Identifiability and identification a pollution source in a river by using a semi-discretized scheme”, Appl. Math. Comput., 221 (2013), 1–9 | MR | Zbl