The small index property and the cofinality of the automorphism group
Matematičeskie trudy, Tome 19 (2016) no. 1, pp. 70-90.

Voir la notice de l'article provenant de la source Math-Net.Ru

Within the general model-theoretical framework, we study the small index property and representation of the automorphism group as the union of an increasing chain of proper subsets of a special form.
@article{MT_2016_19_1_a2,
     author = {K. Zh. Kudaibergenov},
     title = {The small index property and the cofinality of the automorphism group},
     journal = {Matemati\v{c}eskie trudy},
     pages = {70--90},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2016_19_1_a2/}
}
TY  - JOUR
AU  - K. Zh. Kudaibergenov
TI  - The small index property and the cofinality of the automorphism group
JO  - Matematičeskie trudy
PY  - 2016
SP  - 70
EP  - 90
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2016_19_1_a2/
LA  - ru
ID  - MT_2016_19_1_a2
ER  - 
%0 Journal Article
%A K. Zh. Kudaibergenov
%T The small index property and the cofinality of the automorphism group
%J Matematičeskie trudy
%D 2016
%P 70-90
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2016_19_1_a2/
%G ru
%F MT_2016_19_1_a2
K. Zh. Kudaibergenov. The small index property and the cofinality of the automorphism group. Matematičeskie trudy, Tome 19 (2016) no. 1, pp. 70-90. http://geodesic.mathdoc.fr/item/MT_2016_19_1_a2/

[1] Kudaibergenov K. Zh., “Gruppy avtomorfizmov i tsepi zamknutykh podgrupp”, Matem. tr., 4:2 (2001), 128–137 | MR

[2] Kudaibergenov K. Zh., “Ob opredelenii svoistva malogo indeksa”, Matem. tr., 17:1 (2014), 123–127 | MR | Zbl

[3] Dixon J. D., Neumann P. M., Thomas S., “Subgroups of small index in infinite symmetric groups”, Bull. London Math. Soc., 18:6 (1986), 580–586 | DOI | MR | Zbl

[4] Droste M., Holland W. C., Macpherson H. D., “Automorphism groups of infinite semilinear orders (II)”, Proc. London Math. Soc. (3), 58:3 (1989), 479–494 | DOI | MR | Zbl

[5] Droste M., Truss J. K., “The uncountable cofinality of the automorphism group of the countable universal distributive lattice”, Demonstratio Math., 44:3 (2011), 473–479 | MR | Zbl

[6] Evans D. M., “Subgroups of small index in infinite general linear groups”, Bull. London Math. Soc., 18:6 (1986), 587–590 | DOI | MR | Zbl

[7] Gourion C., “À propos du groupe des automorphismes de $(\mathbb Q,\leq)$”, C. R. Acad. Sci. Paris Sér. I Math., 315:13 (1992), 1329–1331 | MR | Zbl

[8] Hodges W., Hodkinson I. M., Lascar D., Shelah S., “The small index property for $\omega$-stable $\omega$-categorical structures and for the random graph”, J. London Math. Soc. (2), 48:2 (1993), 204–218 | DOI | MR | Zbl

[9] Lascar D., “Autour de la propriete de petit indice”, Proc. London Math. Soc. (3), 62:1 (1991), 25–53 | DOI | MR | Zbl

[10] Lascar D., Shelah S., “Uncountable saturated structures have the small index property”, Bull. London Math. Soc., 25:2 (1993), 125–131 | DOI | MR | Zbl

[11] Macpherson H. D., Neumann P. M., “Subgroups of infinite symmetric groups”, J. London Math. Soc. (2), 42:1 (1990), 64–84 | DOI | MR | Zbl

[12] Melles G., Shelah S., “A saturated model of an unsuperstable theory of cardinality greater than its theory has the small index property”, Proc. London Math. Soc. (3), 69:3 (1994), 449–463 | DOI | MR | Zbl

[13] Truss J. K., “Infinite permutation groups. II. Subgroups of small index”, J. Algebra, 120:2 (1989), 494–515 | DOI | MR | Zbl