Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MT_2015_18_2_a5, author = {I. V. Podvigin}, title = {On the rate of convergence in the individual ergodic theorem for the action of a semigroup}, journal = {Matemati\v{c}eskie trudy}, pages = {93--111}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MT_2015_18_2_a5/} }
I. V. Podvigin. On the rate of convergence in the individual ergodic theorem for the action of a semigroup. Matematičeskie trudy, Tome 18 (2015) no. 2, pp. 93-111. http://geodesic.mathdoc.fr/item/MT_2015_18_2_a5/
[1] Vershik A. M., Kachurovskii A. G., “Skorosti skhodimosti v ergodicheskikh teoremakh dlya lokalno konechnykh grupp i obraschennye martingaly”, Differents. uravneniya i protsessy upr., 1999, no. 1, 19–26
[2] Kachurovskii A. G., “Skorosti skhodimosti v ergodicheskikh teoremakh”, UMN, 51:4 (1996), 73–124 | DOI | Zbl
[3] Kachurovskii A. G., Podvigin I. V., “Bolshie ukloneniya i skorosti skhodimosti v ergodicheskoi teoreme Birkgofa”, Matem. zametki, 94:4 (2013), 569–577 | DOI | Zbl
[4] Kachurovskii A. G., Podvigin I. V., “Skorosti skhodimosti v ergodicheskikh teoremakh dlya periodicheskogo gaza Lorentsa na ploskosti”, Dokl. RAN, 455:1 (2014), 11–14 | DOI | Zbl
[5] Kachurovskii A. G., Podvigin I. V., “Otsenki skorostei skhodimosti v ergodicheskikh teoremakh fon Neimana i Birkgofa”, Tr. Mosk. matem. o-va, 2016 (to appear)
[6] Lyuis Dzh., Fister K., “Termodinamicheskaya teoriya veroyatnostei: nekotorye aspekty bolshikh uklonenii”, UMN, 50:2(302) (1995), 47–88
[7] Podvigin I. V., “Ob eksponentsialnoi skorosti skhodimosti v ergodicheskoi teoreme Birkgofa”, Matem. zametki, 95:4 (2014), 638–640 | DOI | Zbl
[8] Sedalischev V. V., “Svyaz skorostei skhodimosti v ergodicheskikh teoremakh fon Neimana i Birkgofa v $L_p$”, Sib. matem. zhurn., 55:2 (2014), 412–426
[9] Chung Y. M., Takahasi H., “Large deviation principle for Benedicks–Carleson quadratic maps”, Comm. Math. Phys., 315:3 (2012), 803–826 | DOI | Zbl
[10] Eizenberg A., Kifer Y., Weiss B., “Large deviations for ${\mathbb{Z}^d}$-actions”, Comm. Math. Phys., 164:3 (1994), 433–454 | DOI | Zbl
[11] Föllmer H., Orey S., “Large deviations for the empirical field of a Gibbs measure”, Ann. Probab., 16:3 (1988), 961–977 | DOI
[12] Georgii H.-O., Gibbs Measures and Phase Transitions, de Gruyter Studies in Mathematics, 9, Walter de Gruyter Co., Berlin, 1988
[13] Kifer Y., “Large deviations in dynamical systems and stochastic processes”, Trans. Amer. Math. Soc., 321:2 (1990), 505–524 | DOI | Zbl
[14] Krengel U., Ergodic Theorems, de Gruyter Studies in Mathematics, 6, Walter de Gruyter Co., Berlin, 1985 | Zbl
[15] Melbourne I., “Large and moderate deviations for slowly mixing dynamical systems”, Proc. Amer. Math. Soc., 137:5 (2009), 1735–1741 | DOI | Zbl
[16] Melbourne I., Nicol M., “Large deviations for nonuniformly hyperbolic systems”, Trans. Amer. Math. Soc., 360:12 (2008), 6661–6676 | DOI | Zbl
[17] Nevo A., “Pointwise ergodic theorems for actions of groups”, Handbook of Dynamical Systems. Part B, v. 1, 2006, 871–982 | DOI | Zbl
[18] Wiener N., “The ergodic theorem”, Duke Math. J., 5:1 (1939), 1–18 | DOI