On the rate of convergence in the individual ergodic theorem for the action of a semigroup
Matematičeskie trudy, Tome 18 (2015) no. 2, pp. 93-111.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the individual ergodic theorem for the action of a semigroup of measure-preserving mappings. We estimate the rate of convergence using estimates for the probability of large deviations for the ergodic averages with an essentially bounded averaging function. We find estimates for the rate of convergence of the ergodic averages in the cases of Benedicks–Carleson quadratic mappings, expanding mappings of Pomeau–Manneville type with a neutral point, and multidimensional shifts.
@article{MT_2015_18_2_a5,
     author = {I. V. Podvigin},
     title = {On the rate of convergence in the individual ergodic theorem for the action of a semigroup},
     journal = {Matemati\v{c}eskie trudy},
     pages = {93--111},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2015_18_2_a5/}
}
TY  - JOUR
AU  - I. V. Podvigin
TI  - On the rate of convergence in the individual ergodic theorem for the action of a semigroup
JO  - Matematičeskie trudy
PY  - 2015
SP  - 93
EP  - 111
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2015_18_2_a5/
LA  - ru
ID  - MT_2015_18_2_a5
ER  - 
%0 Journal Article
%A I. V. Podvigin
%T On the rate of convergence in the individual ergodic theorem for the action of a semigroup
%J Matematičeskie trudy
%D 2015
%P 93-111
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2015_18_2_a5/
%G ru
%F MT_2015_18_2_a5
I. V. Podvigin. On the rate of convergence in the individual ergodic theorem for the action of a semigroup. Matematičeskie trudy, Tome 18 (2015) no. 2, pp. 93-111. http://geodesic.mathdoc.fr/item/MT_2015_18_2_a5/

[1] Vershik A. M., Kachurovskii A. G., “Skorosti skhodimosti v ergodicheskikh teoremakh dlya lokalno konechnykh grupp i obraschennye martingaly”, Differents. uravneniya i protsessy upr., 1999, no. 1, 19–26

[2] Kachurovskii A. G., “Skorosti skhodimosti v ergodicheskikh teoremakh”, UMN, 51:4 (1996), 73–124 | DOI | Zbl

[3] Kachurovskii A. G., Podvigin I. V., “Bolshie ukloneniya i skorosti skhodimosti v ergodicheskoi teoreme Birkgofa”, Matem. zametki, 94:4 (2013), 569–577 | DOI | Zbl

[4] Kachurovskii A. G., Podvigin I. V., “Skorosti skhodimosti v ergodicheskikh teoremakh dlya periodicheskogo gaza Lorentsa na ploskosti”, Dokl. RAN, 455:1 (2014), 11–14 | DOI | Zbl

[5] Kachurovskii A. G., Podvigin I. V., “Otsenki skorostei skhodimosti v ergodicheskikh teoremakh fon Neimana i Birkgofa”, Tr. Mosk. matem. o-va, 2016 (to appear)

[6] Lyuis Dzh., Fister K., “Termodinamicheskaya teoriya veroyatnostei: nekotorye aspekty bolshikh uklonenii”, UMN, 50:2(302) (1995), 47–88

[7] Podvigin I. V., “Ob eksponentsialnoi skorosti skhodimosti v ergodicheskoi teoreme Birkgofa”, Matem. zametki, 95:4 (2014), 638–640 | DOI | Zbl

[8] Sedalischev V. V., “Svyaz skorostei skhodimosti v ergodicheskikh teoremakh fon Neimana i Birkgofa v $L_p$”, Sib. matem. zhurn., 55:2 (2014), 412–426

[9] Chung Y. M., Takahasi H., “Large deviation principle for Benedicks–Carleson quadratic maps”, Comm. Math. Phys., 315:3 (2012), 803–826 | DOI | Zbl

[10] Eizenberg A., Kifer Y., Weiss B., “Large deviations for ${\mathbb{Z}^d}$-actions”, Comm. Math. Phys., 164:3 (1994), 433–454 | DOI | Zbl

[11] Föllmer H., Orey S., “Large deviations for the empirical field of a Gibbs measure”, Ann. Probab., 16:3 (1988), 961–977 | DOI

[12] Georgii H.-O., Gibbs Measures and Phase Transitions, de Gruyter Studies in Mathematics, 9, Walter de Gruyter Co., Berlin, 1988

[13] Kifer Y., “Large deviations in dynamical systems and stochastic processes”, Trans. Amer. Math. Soc., 321:2 (1990), 505–524 | DOI | Zbl

[14] Krengel U., Ergodic Theorems, de Gruyter Studies in Mathematics, 6, Walter de Gruyter Co., Berlin, 1985 | Zbl

[15] Melbourne I., “Large and moderate deviations for slowly mixing dynamical systems”, Proc. Amer. Math. Soc., 137:5 (2009), 1735–1741 | DOI | Zbl

[16] Melbourne I., Nicol M., “Large deviations for nonuniformly hyperbolic systems”, Trans. Amer. Math. Soc., 360:12 (2008), 6661–6676 | DOI | Zbl

[17] Nevo A., “Pointwise ergodic theorems for actions of groups”, Handbook of Dynamical Systems. Part B, v. 1, 2006, 871–982 | DOI | Zbl

[18] Wiener N., “The ergodic theorem”, Duke Math. J., 5:1 (1939), 1–18 | DOI