First-order combinatorics and model-theoretical properties that can be distinct for mutually interpretable theories
Matematičeskie trudy, Tome 18 (2015) no. 2, pp. 61-92.

Voir la notice de l'article provenant de la source Math-Net.Ru

The notions of finitary and infinitary combinatorics were recently introduced by the author. In the present article, we discuss these notions and the corresponding semantical layers. We suggest a definition of a model-theoretical property. By author's opinion, this definition agrees with the meaning that is generally accepted and used in model theory. We show that the similarity relation for theories over finitary and infinitary layers of model-theoretical properties is natural and important. Our arguments are based on comparing our approach with known model-theoretical ones. We find examples of pairs of mutually interpretable theories possessing distinct simple model-theoretical properties. These examples show weak points of the notion of mutual interpretability from the point of view of preservation of model-theoretical properties.
@article{MT_2015_18_2_a4,
     author = {M. G. Peretyat'kin},
     title = {First-order combinatorics and model-theoretical properties that can be distinct for mutually interpretable theories},
     journal = {Matemati\v{c}eskie trudy},
     pages = {61--92},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2015_18_2_a4/}
}
TY  - JOUR
AU  - M. G. Peretyat'kin
TI  - First-order combinatorics and model-theoretical properties that can be distinct for mutually interpretable theories
JO  - Matematičeskie trudy
PY  - 2015
SP  - 61
EP  - 92
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2015_18_2_a4/
LA  - ru
ID  - MT_2015_18_2_a4
ER  - 
%0 Journal Article
%A M. G. Peretyat'kin
%T First-order combinatorics and model-theoretical properties that can be distinct for mutually interpretable theories
%J Matematičeskie trudy
%D 2015
%P 61-92
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2015_18_2_a4/
%G ru
%F MT_2015_18_2_a4
M. G. Peretyat'kin. First-order combinatorics and model-theoretical properties that can be distinct for mutually interpretable theories. Matematičeskie trudy, Tome 18 (2015) no. 2, pp. 61-92. http://geodesic.mathdoc.fr/item/MT_2015_18_2_a4/

[1] Goncharov S. S., Ershov Yu. L., Konstruktivnye modeli, Nauchnaya kniga, Novosibirsk, 1999

[2] Maltsev A. I., “Strogo rodstvennye modeli i rekursivno sovershennye algebry”, Dokl. AN SSSR, 145:2 (1962), 276–279 | Zbl

[3] Peretyatkin M. G., “Podobie svoistv rekursivno perechislimykh i konechno aksiomatiziruemykh teorii”, Dokl. AN SSSR, 308:4 (1989), 788–791

[4] Peretyatkin M. G., “Semanticheski universalnye klassy modelei”, Algebra i logika, 30:4 (1991), 414–431 | Zbl

[5] Peretyatkin M. G., “Semanticheskaya universalnost teorii nad superspiskom”, Algebra i logika, 30:5 (1991), 517–539 | Zbl

[6] Peretyatkin M. G., Konechno aksiomatiziruemye teorii, Nauchnaya kniga, Novosibirsk, 1997

[7] de Bouvère K., “Synonymous theories”, The Theory of Models, North-Holland Publishing Co., Amsterdam, 1965, 402–406

[8] Gaifman H., “Operations on relational structures, functors and classes, I”, Proc. of the Tarski Sympos. (Berkeley, Calif., Univ. California, 1971), Proc. Sympos Pure Math., XXV, Amer. Math. Soc., Providence, RI, 1974, 21–39

[9] Hanf W., “Model-theoretic methods in the study of elementary logic”, Theory of Models, Proc. Internat. Sympos. (Berkeley, 1963), North-Holland Publishing Co., Amsterdam, 1965, 132–145

[10] Hanf W., “The Boolean algebra of logic”, Bull. Amer. Math. Soc., 81 (1975), 587–589 | DOI | Zbl

[11] Hodges W., A Shorter Model Theory, Cambridge University Press, Cambridge, 1997 | Zbl

[12] Manders K., First-Order Logical Systems and Set-Theoretic Definability, Preprint, University of Pittsburgh, Pittsburgh, 1979

[13] Mycielski J., “A lattice of interpretability types of theories”, J. Symbolic Logic, 42:2 (1977), 297–305 | DOI | Zbl

[14] Mycielski J., Pudlak P., Stern A., “A lattice of chapters of mathematics”, Mem. Amer. Math. Soc., 84, no. 426, 1990, 1–70

[15] Myers D., “Lindenbaum–Tarski algebras”, Handbook of Boolean Algebras, v. 3, Elsevier Science Publishers, Amsterdam, 1989, 1167–1195

[16] Myers D., “An interpretive isomorphism between binary and ternary relations”, Structures in Logic and Computer Science, Lecture Notes in Comput. Sci., 1261, Springer-Verlag, Berlin, 1997, 84–105 | DOI | Zbl

[17] Peretyat'kin M. G., “Finitely axiomatizable theories and similarity relations”, Model Theory and Applications, American Math. Soc. Transl. Ser. 2, 195, Amer. Math. Soc., Providence, RI, 1999, 309–346 | Zbl

[18] Peretyat'kin M. G., “Introduction in first-order combinatorics providing a conceptual framework for computation in predicate logic”, Computation Tools, IARIA, 2013, 31–36

[19] Peretyat'kin M. G., “On model-theoretic properties that are not preserved on the pairs of mutually interpretable theories”, Bull. Symbolic Logic, 20:3 (2014), 398

[20] Pinter C., “Properties preserved under definitional equivalence and interpretations”, Z. Math. Logik Grundlag. Math., 24:6 (1978), 481–488 | DOI | Zbl

[21] Shoenfield J. R., Mathematical Logic, Addison-Wesley Publishing Co., Massachusetts–London–Don Mills, Ont., 1967 | Zbl

[22] Szczerba L., “Interpretability of elementary theories”, Logic, Foundations of Mathematics and Computability Theory, Proc. Fifth Int. Congr. of Logic, Methodology and Philos. of Sci. (Univ. Western Ontario, London, Ont., 1975), v. I, D. Reidel Publishing Co., Dordrecht, 1977, 129–145 | DOI

[23] Szmielew W. and Tarski A., “Mutual interpretability of some essentially undecidable theories”, Proc. of the Int. Congress of Mathematicians, Amer. Math. Soc., Providence, RI, 1952, 734

[24] Rogers H. J., Theory of Recursive Functions and Effective Computability, McGraw-Hill Book Co., New York–Toronto–London, 1967 | Zbl