Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MT_2015_18_1_a4, author = {E. A. Sevostyanov}, title = {On the lower order of mappings with finite length distortion}, journal = {Matemati\v{c}eskie trudy}, pages = {98--117}, publisher = {mathdoc}, volume = {18}, number = {1}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MT_2015_18_1_a4/} }
E. A. Sevostyanov. On the lower order of mappings with finite length distortion. Matematičeskie trudy, Tome 18 (2015) no. 1, pp. 98-117. http://geodesic.mathdoc.fr/item/MT_2015_18_1_a4/
[1] Reshetnyak Yu. G., Prostranstvennye otobrazheniya s ogranichennym iskazheniem, Nauka, Novosibirsk, 1982
[2] Saks S., Teoriya integrala, Izd-vo inostr. lit., M., 1949
[3] Sevostyanov E. A., “Obobschenie odnoi lemmy E. A. Poletskogo na klassy prostranstvennykh otobrazhenii”, Ukr. matem. zhurn., 61:7 (2009), 969–975
[4] Sevostyanov E. A., “K teorii ustraneniya osobennostei otobrazhenii s neogranichennoi kharakteristikoi kvazikonformnosti”, Izv. RAN. Ser. matem., 74:1 (2010), 159–174 | DOI
[5] Federer G., Geometricheskaya teoriya mery, Nauka, M., 1987
[6] Bishop C. J., Gutlyanskii V. Ya., Martio O., Vuorinen M., “On conformal dilatation in space”, Internat. J. Math. Sci., 22 (2003), 1397–1420 | DOI
[7] Caraman P., “Relations between $p$-capacity and $p$-module, I”, Rev. Roumaine Math. Pures Appl., 39:6 (1994), 509–553
[8] Fuglede B., “Extremal length and functional completion”, Acta Math., 98 (1957), 171–219 | DOI
[9] Golberg A., Salimov R., “Topological mappings of integrally bounded $p$-moduli”, Ann. Univ. Buchar. Math. Ser., 3(LXI):1 (2012), 49–66
[10] Gutlyanskii V. Ya., Ryazanov V. I., Srebro U., Yakubov E., The Beltrami Equation: A Geometric Approach, Developments in Mathematics, 26, Springer, New York, etc., 2012
[11] Iwaniec T., Martin G., Geometric Function Theory and Nonlinear Analysis, Oxford Mathematical Monographs, Clarendon Press, Oxford, 2001
[12] Manfredi J. J., Villamor E., “Mappings with integrable dilatation in higher dimensions”, Bull. Amer. Math. Soc. (N.S.), 32:2 (1995), 235–240 | DOI
[13] Manfredi J. J., Villamor E., “An extension of Reshetnyak's theorem”, Indiana Univ. Math. J., 47:3 (1998), 1131–1145
[14] Martio O., Ryazanov V., Srebro U., Yakubov E., “Mappings with finite length distortion”, J. Anal. Math., 93 (2004), 215–236 | DOI
[15] Martio O., Ryazanov V., Srebro U., Yakubov E., Moduli in Modern Mapping Theory, Springer Monographs in Mathematics, Springer, New York, 2009
[16] Rado T., Reichelderfer P. V., Continuous Transformations in Analysis, Springer-Verlag, Berlin etc., 1955
[17] Rajala K., “Mappings of finite distortion: the Rickman–Picard theorem for mappings of finite lower order”, J. Anal. Math., 94 (2004), 235–248 | DOI
[18] Rickman S., Vuorinen M., “On the order of quasiregular mappings”, Ann. Acad. Sci. Fenn. Ser. A I Math., 7:2 (1982), 221–231 | DOI
[19] Rickman S., Quasiregular Mappings, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 26, Springer-Verlag, Berlin, 1993
[20] Sevost'yanov E. A., “The Väisälä inequality for mappings with finite length distortion”, Complex Variables Elliptic Equ., 55:1–3 (2010), 91–101 | DOI
[21] Väisälä J., Lectures on $n$-Dimensional Quasiconformal Mappings, Lecture Notes in Math., 229, Springer-Verlag, Berlin etc., 1971