On the lower order of mappings with finite length distortion
Matematičeskie trudy, Tome 18 (2015) no. 1, pp. 98-117

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the problem of the so-called lower order for one kind of mappings with finite distortion, actively investigated in the recent 15–20 years. We prove that mappings with finite length distortion $f:D\rightarrow \mathbb{R}^n$, $n\ge 2$, whose outer dilatation is integrable to the power $\alpha>n-1$ with finite asymptotic limit have lower order bounded from below.
@article{MT_2015_18_1_a4,
     author = {E. A. Sevostyanov},
     title = {On the lower order of mappings with finite length distortion},
     journal = {Matemati\v{c}eskie trudy},
     pages = {98--117},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2015_18_1_a4/}
}
TY  - JOUR
AU  - E. A. Sevostyanov
TI  - On the lower order of mappings with finite length distortion
JO  - Matematičeskie trudy
PY  - 2015
SP  - 98
EP  - 117
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2015_18_1_a4/
LA  - ru
ID  - MT_2015_18_1_a4
ER  - 
%0 Journal Article
%A E. A. Sevostyanov
%T On the lower order of mappings with finite length distortion
%J Matematičeskie trudy
%D 2015
%P 98-117
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2015_18_1_a4/
%G ru
%F MT_2015_18_1_a4
E. A. Sevostyanov. On the lower order of mappings with finite length distortion. Matematičeskie trudy, Tome 18 (2015) no. 1, pp. 98-117. http://geodesic.mathdoc.fr/item/MT_2015_18_1_a4/