Countable infinite existentially closed models of universally axiomatizable theories
Matematičeskie trudy, Tome 18 (2015) no. 1, pp. 48-97

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present article, we obtain a new criterion for a model of a universally axiomatizable theory to be existentially closed. The notion of a maximal existential type is used in the proof and for investigating properties of countable infinite existentially closed structures. The notions of a prime and a homogeneous model, which are classical for the general model theory, are introduced for such structures. We study universal theories with the joint embedding property admitting a single countable infinite existentially closed model. We also construct, for every natural $n$, an example of a complete inductive theory with a countable infinite family of countable infinite models such that $n$ of them are existentially closed and exactly two are homogeneous.
@article{MT_2015_18_1_a3,
     author = {A. T. Nurtazin},
     title = {Countable infinite existentially closed models of universally axiomatizable theories},
     journal = {Matemati\v{c}eskie trudy},
     pages = {48--97},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2015_18_1_a3/}
}
TY  - JOUR
AU  - A. T. Nurtazin
TI  - Countable infinite existentially closed models of universally axiomatizable theories
JO  - Matematičeskie trudy
PY  - 2015
SP  - 48
EP  - 97
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2015_18_1_a3/
LA  - ru
ID  - MT_2015_18_1_a3
ER  - 
%0 Journal Article
%A A. T. Nurtazin
%T Countable infinite existentially closed models of universally axiomatizable theories
%J Matematičeskie trudy
%D 2015
%P 48-97
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2015_18_1_a3/
%G ru
%F MT_2015_18_1_a3
A. T. Nurtazin. Countable infinite existentially closed models of universally axiomatizable theories. Matematičeskie trudy, Tome 18 (2015) no. 1, pp. 48-97. http://geodesic.mathdoc.fr/item/MT_2015_18_1_a3/