Countable infinite existentially closed models of universally axiomatizable theories
Matematičeskie trudy, Tome 18 (2015) no. 1, pp. 48-97.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present article, we obtain a new criterion for a model of a universally axiomatizable theory to be existentially closed. The notion of a maximal existential type is used in the proof and for investigating properties of countable infinite existentially closed structures. The notions of a prime and a homogeneous model, which are classical for the general model theory, are introduced for such structures. We study universal theories with the joint embedding property admitting a single countable infinite existentially closed model. We also construct, for every natural $n$, an example of a complete inductive theory with a countable infinite family of countable infinite models such that $n$ of them are existentially closed and exactly two are homogeneous.
@article{MT_2015_18_1_a3,
     author = {A. T. Nurtazin},
     title = {Countable infinite existentially closed models of universally axiomatizable theories},
     journal = {Matemati\v{c}eskie trudy},
     pages = {48--97},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2015_18_1_a3/}
}
TY  - JOUR
AU  - A. T. Nurtazin
TI  - Countable infinite existentially closed models of universally axiomatizable theories
JO  - Matematičeskie trudy
PY  - 2015
SP  - 48
EP  - 97
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2015_18_1_a3/
LA  - ru
ID  - MT_2015_18_1_a3
ER  - 
%0 Journal Article
%A A. T. Nurtazin
%T Countable infinite existentially closed models of universally axiomatizable theories
%J Matematičeskie trudy
%D 2015
%P 48-97
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2015_18_1_a3/
%G ru
%F MT_2015_18_1_a3
A. T. Nurtazin. Countable infinite existentially closed models of universally axiomatizable theories. Matematičeskie trudy, Tome 18 (2015) no. 1, pp. 48-97. http://geodesic.mathdoc.fr/item/MT_2015_18_1_a3/

[1] Ershov Yu. L., “Ob elementarnoi teorii maksimalnykh normirovannykh polei”, DAN SSSR, 165:1 (1965), 1390–1393

[2] Keisler G. Dzh., Chen Ch. Ch., Teoriya modelei, Mir, M., 1977

[3] Nurtazin A. T., “Eliminatsiya kvantorov i problemy razreshimosti elementarnykh teorii”, Izv. AN KazSSR. Ser. fiz.-mat., 1986, no. 1, 51–54

[4] Nurtazin A. T., “Bazisnye sovokupnosti i dva voprosa v teorii bulevykh algebr”, Izv. AN KazSSR. Ser. fiz.-mat., 1986, no. 3, 33–36

[5] Dzh. Barvais, Yu. L. Ershov, E. A. Palyutin, A. D. Taimanov (red.), Teoriya modelei, Spravochnaya kniga po matematicheskoi logike, v. 1, Nauka, M., 1982

[6] Barwise J., Robinson A., “Completing theories by forcing”, Ann. Math. Logic, 2:2 (1970), 119–142 | DOI

[7] Cohen P. J., Set Theory and the Continuum Hypothesis, W. A. Benjamin Inc., New York–Amsterdam, 1966

[8] Fraisse R., “Sur quelques classifications des systèmes de relations”, Publ. Scient. de l'Univ. d'Alger, Sér. A. Sci. Math., 1:1 (1955), 35–182

[9] Hodges W., Model Theory, Encyclopedia of Mathematics and Its Applications, 42, Cambridge Univ. Press, Cambridge, 1993

[10] Macintyre A., “Omitting quantifier-free types in generic structures”, J. Symbolic Logic, 37 (1972), 512–520 | DOI

[11] Macintyre A., “On algebraically closed groups”, Ann. of Math. (2), 96 (1972), 53–97 | DOI

[12] Robinson A., On the Metamathematics of Algebra, Studies in Logic and the Foundations of Mathematics, North-Holland Publishing Co., Amsterdam, 1951

[13] Robinson A., “Infinite forcing in model theory”, Proc. of the Second Scandinavian Logic Symposium (Oslo, 1970), Studies in Logic and the Foundations of Mathematics, 63, North-Holland, Amsterdam, 1971, 317–340

[14] Ryll-Nardzewski C., “On the categoricity in power $\aleph_0$”, Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom Phys., 7 (1959), 545–548

[15] Saracino D., “Model companion for $\aleph_0$-categorical theories”, Proc. Amer. Math. Soc., 39 (1973), 591–598

[16] Simmons H., “Existentially closed structures”, J. Symbolic Logic, 37:2 (1972), 293–310 | DOI

[17] Vaught R., “Denumerable models of complete theories”, Infinistic Methods, Pergamon, London, 1961, 303–321