A “direct” method to prove the generalized It\^o--Venttsel' formula for a generalized stochastic differential equation
Matematičeskie trudy, Tome 18 (2015) no. 1, pp. 27-47.

Voir la notice de l'article provenant de la source Math-Net.Ru

For the first time we present a complete proof (from the standpoint of stochastic analysis) of the generalized Itô–Venttsel' formula whose ideas were adduced in [8]. The proposed proof is an approach to construct the generalized Itô–Venttsel' formula based on the direct application of the generalized Itô formula and the theory of stochastic approximation in contrast to the proof presented in [17] and based on the method of the integral invariants of a stochastic differential equation.
@article{MT_2015_18_1_a2,
     author = {E. V. Karachanskaya},
     title = {A {\textquotedblleft}direct{\textquotedblright} method to prove the generalized {It\^o--Venttsel'} formula for a generalized stochastic differential equation},
     journal = {Matemati\v{c}eskie trudy},
     pages = {27--47},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2015_18_1_a2/}
}
TY  - JOUR
AU  - E. V. Karachanskaya
TI  - A “direct” method to prove the generalized It\^o--Venttsel' formula for a generalized stochastic differential equation
JO  - Matematičeskie trudy
PY  - 2015
SP  - 27
EP  - 47
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2015_18_1_a2/
LA  - ru
ID  - MT_2015_18_1_a2
ER  - 
%0 Journal Article
%A E. V. Karachanskaya
%T A “direct” method to prove the generalized It\^o--Venttsel' formula for a generalized stochastic differential equation
%J Matematičeskie trudy
%D 2015
%P 27-47
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2015_18_1_a2/
%G ru
%F MT_2015_18_1_a2
E. V. Karachanskaya. A “direct” method to prove the generalized It\^o--Venttsel' formula for a generalized stochastic differential equation. Matematičeskie trudy, Tome 18 (2015) no. 1, pp. 27-47. http://geodesic.mathdoc.fr/item/MT_2015_18_1_a2/

[1] Antosik P., Mikusinskii Ya., Sikorskii R., Teoriya obobschennykh funktsii. Sekventsialnyi podkhod, Mir, M., 1976

[2] Venttsel A. D., “Ob uravneniyakh teorii uslovnykh markovskikh protsessov”, TVP, 10:2 (1965), 390–393

[3] Gikhman I. I., Skorokhod A. V., Stokhasticheskie differentsialnye uravneniya, Naukova dumka, Kiev, 1968

[4] Demin N. S., Rozhkova S. V., “Informatsionnyi analiz v sovmestnoi zadache filtratsii, interpolyatsii i ekstrapolyatsii po nepreryvno-diskretnym nablyudeniyam s pamyatyu”, Vestn. Tom. gos. un-ta, 2006, no. 293, 18–24

[5] Demin N. S., Rozhkova S. V., Rozhkova O. V., “Informatsionnyi analiz v sovmestnoi zadache nepreryvno-diskretnoi filtratsii i obobschennoi ekstrapolyatsii. I: Obschii sluchai”, Izvestiya TPU, 2010, no. 5, 6–11

[6] Dubko V. A., Voprosy teorii i primeneniya stokhasticheskikh differentsialnykh uravnenii, DVO AN SSSR, Vladivostok, 1989

[7] Dubko V. A., “Otkrytye evolyutsioniruyuschie sistemy”, Pervaya mezhdunar. nauchno-tekhn. konf. «Otkrytye evolyutsioniruyuschie sistemy», Tez. dokl. (26–27 aprelya 2002 g.), VNZ VMURoL, Kiev, 2002, 14–31 http://openevolvingsystems.narod.ru/indexUkr.htm

[8] Dubko V. A., Karachanskaya E. V., O dvukh podkhodakh k postroeniyu obobschennoi formuly Ito–Venttselya, Preprint No 174. Vychislitelnyi tsentr DVO RAN, Izd-vo Tikhookean. gos. un-ta, Khabarovsk, 2012

[9] Zhurov A. N., “Poisk optimalnykh investitsionnykh strategii v sluchae stepennoi i logarifmicheskoi funktsii poleznosti kapitala”, Upravlenie riskom, 2011, no. 4, 38–42

[10] Zorich V. A., Matematicheskii analiz, v. 2, MTsNMO, M., 1998

[11] Ito K., “Ob odnoi formule, kasayuscheisya stokhasticheskikh differentsialov”, Matematika. Periodicheskii sb. per. inostr. statei, 3:5 (1959), 131–141

[12] Kabanov Yu. M., “Obobschennaya formula Ito dlya rasshirennogo stokhasticheskogo integrala po puassonovskoi sluchainoi mere”, UMN, 29:4(178) (1974), 167–168

[13] Karachanskaya E. V., “Ob odnom obobschenii formuly Ito–Venttselya”, Obozrenie prikl. i prom. matem., 18:2 (2011), 494–496

[14] Karachanskaya E. V., “Postroenie programmnykh upravlenii s veroyatnostyu 1 dlya dinamicheskoi sistemy s puassonovskimi vozmuscheniyami”, Vestn. Tikhookeanskogo gosuniversiteta, 2011, no. 2(21), 51–60

[15] Karachanskaya E. V., “Obobschennaya formula Ito–Venttselya dlya sluchaya netsentrirovannoi puassonovskoi mery, stokhasticheskii pervyi integral i pervyi integral”, Matem. tr., 17:1 (2014), 99–122

[16] Klebaner F. K., Liptser R. Sh., “Diffuzionnaya model razoreniya. Asimptoticheskii analiz”, TVP, 55:2 (2010), 350–356 | DOI

[17] Kolmanovskii V. B., “Zadachi upravleniya pri nepolnoi informatsii”, Sorosovskii obrazovatelnyi zhurnal, 1999, no. 4, 122–127

[18] Krasovskii N. N., Kotelnikova A. N., “Odna zadacha ob ustoichivom otslezhivanii dvizheniya”, Tr. IMM UrO RAN, 12, no. 1, 2006, 142–156

[19] Krasovskii N. N., Kotelnikova A. N., “Stokhasticheskoe upravlenie v determinirovannoi differentsialnoi igre sblizheniya-ukloneniya”, Avtomat. i telemekh., 2011, no. 2, 93–110

[20] Krylov N. V., “Ob odnom dokazatelstve formuly Ito”, Statistika i upravlenie sluchainymi protsessami, Tr. MIAN, 202, TVP, M., 1993, 170–174

[21] Kuznetsov N. A., Liptser R. Sh., Serebrovskii A. P., “Optimalnoe upravlenie i obrabotka informatsii v nepreryvnom vremeni (lineinaya sistema, kvadratichnyi funktsional)”, Avtomat. i telemekh., 1980, no. 10, 47–53

[22] Kunita Kh., Vatanabe Sh., “O martingalakh, integriruemykh s kvadratom”, Matematika, 15:1 (1971), 66–102

[23] Liptser R. Sh., Shiryaev A. N., Teoriya martingalov, Nauka, M., 1986

[24] Miller B. M., Avrachenkov K. E. i dr., “Zadacha optimalnogo stokhasticheskogo upravleniya potokom dannykh po nepolnoi informatsii”, Probl. peredachi inform., 41:2 (2005), 89–110

[25] Miller B. M., Miller G. B., Semenikhin K. V., “Metody sinteza optimalnogo upravleniya markovskim protsessom s konechnym mnozhestvom sostoyanii pri nalichii ogranichenii”, Avtomat. i telemekh., 2011, no. 2, 111–130

[26] Norin N. V., “Formula Ito dlya rasshirennogo stokhasticheskogo integrala s uprezhdayuschim yadrom”, TVP, 39:4 (1994), 743–765

[27] Rozovskii B. L., “O formule Ito–Venttselya”, Vestnik MGU. Ser. matem. mekhan., 1973, no. 1, 26–32

[28] Khametov V. M., “Optimalnoe upravlenie s zapazdyvaniem skachkoobraznymi sluchainymi protsessami”, Avtomat. i telemekh., 1990, no. 2, 75–86

[29] Khametov V. M., Optimalnye strategii upravlyaemykh v slabom smysle stokhasticheskikh sistem s polnoi informatsiei, Dis. ... d.f.-m.n., M., 2001

[30] Shilov G. E., Matematicheskii analiz. Spetsialnyi kurs, GIFML, M., 1961

[31] Shiryaev A. N., Osnovy stokhasticheskoi finansovoi matematiki, v. 1, 2, Fazis, M., 2004

[32] Borkar V. S., “Controlled diffusion processes”, Probab. Surv., 2 (2005), 213–244 | DOI

[33] Brace A., Fabbri G., Goldys B., An Hilbert Space Approach for a Class of Arbitrage Free Implied Volatilities Models, , 2007 http://mpra.ub.uni-muenchen.de/id/eprint/6321

[34] Es-Sebaiy K., Tudor C., “Levy processes and Itô–Skorokhod integrals”, Theor. Stoch. Process., 14:2(30) (2008), 10–18

[35] Flandoli F., Russo F., “Generalized integration and stochastic ODEs”, Ann. Probab., 30:1 (2002), 270–292 | DOI

[36] Fuhrman M., Hu Y., Tessitore G., “Stochastic maximum principle for optimal control of SPDEs”, Appl. Math. Optim., 68:2 (2013), 181–217 | DOI

[37] Krylov N. V., “A relatively short proof of Itô's formula for SPDEs and its applications”, SPDE: Analysis and Comp., 2013, no. 1, 152–174

[38] Krylov N. V., “On the Itô–Ventzell formula for distribution-valued processes and related topics”, Probab. Theory Related Fields, 150:1–2 (2011), 295–319 | DOI

[39] Lazrieva N. L., Toronjadze T. A., “Asymptotic properties of the maximum likelihood estimator, Itô–Ventzell's formula for semimartingales and its application to the recursive estimation in a general scheme of statistical models”, Proc. of the $1$st World Congress of the Bernoulli Soc. (Tashkent, 1986), v. 2, VNU Sci. Press, Utrecht, 1987, 63–66

[40] Ocone D., Pardoux E., “A generalized Itô–Ventzell formula”, Ann. Inst. H. Poincaré Sect. B, 25:1 (1989), 39–71

[41] Øksendal B., Zhang T., “The Itô–Ventzell formula and forward stochastic differential equations driven by Poisson random measures”, Osaka J. Math., 44 (2007), 207–230

[42] Øksendal B., Sulem A., Zhang T., “Optimal control of stochastic delay equations and time-advanced backward stochastic differential equations”, Adv. Appl. Probab., 43:2 (2011), 572–596 | DOI

[43] Øksendal B., Sulem A., Zhang T., A stochastic HJB equation for optimal control of forward-backward SDEs, Preprint Series: Pure Mathematics, , 2013; arXiv: https://www.duo.uio.no/handle/10852/379121312.1472v1

[44] Purtukhia O., “Itô–Ventzell' formula for antisipative processes”, New Trends in Probab. and Statist., v. 1, VSP, Utrecht, 1991, 503–527

[45] Purtukhia O., Jaoshvili V., “Itô-type formula for Poisson anticipating integral”, Reports of Enlarged Session of the Seminar of I. Vekua Institute of Applied Mathematics, 25 (2001), 103–108

[46] Sennewald K., Wälde K., ““Itô's lemma” and the Bellman equation for Poisson processes: An applied view”, J. Econom., 89:1 (2006), 1–36 | DOI