Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MT_2015_18_1_a2, author = {E. V. Karachanskaya}, title = {A {\textquotedblleft}direct{\textquotedblright} method to prove the generalized {It\^o--Venttsel'} formula for a generalized stochastic differential equation}, journal = {Matemati\v{c}eskie trudy}, pages = {27--47}, publisher = {mathdoc}, volume = {18}, number = {1}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MT_2015_18_1_a2/} }
TY - JOUR AU - E. V. Karachanskaya TI - A “direct” method to prove the generalized It\^o--Venttsel' formula for a generalized stochastic differential equation JO - Matematičeskie trudy PY - 2015 SP - 27 EP - 47 VL - 18 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MT_2015_18_1_a2/ LA - ru ID - MT_2015_18_1_a2 ER -
%0 Journal Article %A E. V. Karachanskaya %T A “direct” method to prove the generalized It\^o--Venttsel' formula for a generalized stochastic differential equation %J Matematičeskie trudy %D 2015 %P 27-47 %V 18 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MT_2015_18_1_a2/ %G ru %F MT_2015_18_1_a2
E. V. Karachanskaya. A “direct” method to prove the generalized It\^o--Venttsel' formula for a generalized stochastic differential equation. Matematičeskie trudy, Tome 18 (2015) no. 1, pp. 27-47. http://geodesic.mathdoc.fr/item/MT_2015_18_1_a2/