Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MT_2015_18_1_a2, author = {E. V. Karachanskaya}, title = {A {\textquotedblleft}direct{\textquotedblright} method to prove the generalized {It\^o--Venttsel'} formula for a generalized stochastic differential equation}, journal = {Matemati\v{c}eskie trudy}, pages = {27--47}, publisher = {mathdoc}, volume = {18}, number = {1}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MT_2015_18_1_a2/} }
TY - JOUR AU - E. V. Karachanskaya TI - A “direct” method to prove the generalized It\^o--Venttsel' formula for a generalized stochastic differential equation JO - Matematičeskie trudy PY - 2015 SP - 27 EP - 47 VL - 18 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MT_2015_18_1_a2/ LA - ru ID - MT_2015_18_1_a2 ER -
%0 Journal Article %A E. V. Karachanskaya %T A “direct” method to prove the generalized It\^o--Venttsel' formula for a generalized stochastic differential equation %J Matematičeskie trudy %D 2015 %P 27-47 %V 18 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MT_2015_18_1_a2/ %G ru %F MT_2015_18_1_a2
E. V. Karachanskaya. A “direct” method to prove the generalized It\^o--Venttsel' formula for a generalized stochastic differential equation. Matematičeskie trudy, Tome 18 (2015) no. 1, pp. 27-47. http://geodesic.mathdoc.fr/item/MT_2015_18_1_a2/
[1] Antosik P., Mikusinskii Ya., Sikorskii R., Teoriya obobschennykh funktsii. Sekventsialnyi podkhod, Mir, M., 1976
[2] Venttsel A. D., “Ob uravneniyakh teorii uslovnykh markovskikh protsessov”, TVP, 10:2 (1965), 390–393
[3] Gikhman I. I., Skorokhod A. V., Stokhasticheskie differentsialnye uravneniya, Naukova dumka, Kiev, 1968
[4] Demin N. S., Rozhkova S. V., “Informatsionnyi analiz v sovmestnoi zadache filtratsii, interpolyatsii i ekstrapolyatsii po nepreryvno-diskretnym nablyudeniyam s pamyatyu”, Vestn. Tom. gos. un-ta, 2006, no. 293, 18–24
[5] Demin N. S., Rozhkova S. V., Rozhkova O. V., “Informatsionnyi analiz v sovmestnoi zadache nepreryvno-diskretnoi filtratsii i obobschennoi ekstrapolyatsii. I: Obschii sluchai”, Izvestiya TPU, 2010, no. 5, 6–11
[6] Dubko V. A., Voprosy teorii i primeneniya stokhasticheskikh differentsialnykh uravnenii, DVO AN SSSR, Vladivostok, 1989
[7] Dubko V. A., “Otkrytye evolyutsioniruyuschie sistemy”, Pervaya mezhdunar. nauchno-tekhn. konf. «Otkrytye evolyutsioniruyuschie sistemy», Tez. dokl. (26–27 aprelya 2002 g.), VNZ VMURoL, Kiev, 2002, 14–31 http://openevolvingsystems.narod.ru/indexUkr.htm
[8] Dubko V. A., Karachanskaya E. V., O dvukh podkhodakh k postroeniyu obobschennoi formuly Ito–Venttselya, Preprint No 174. Vychislitelnyi tsentr DVO RAN, Izd-vo Tikhookean. gos. un-ta, Khabarovsk, 2012
[9] Zhurov A. N., “Poisk optimalnykh investitsionnykh strategii v sluchae stepennoi i logarifmicheskoi funktsii poleznosti kapitala”, Upravlenie riskom, 2011, no. 4, 38–42
[10] Zorich V. A., Matematicheskii analiz, v. 2, MTsNMO, M., 1998
[11] Ito K., “Ob odnoi formule, kasayuscheisya stokhasticheskikh differentsialov”, Matematika. Periodicheskii sb. per. inostr. statei, 3:5 (1959), 131–141
[12] Kabanov Yu. M., “Obobschennaya formula Ito dlya rasshirennogo stokhasticheskogo integrala po puassonovskoi sluchainoi mere”, UMN, 29:4(178) (1974), 167–168
[13] Karachanskaya E. V., “Ob odnom obobschenii formuly Ito–Venttselya”, Obozrenie prikl. i prom. matem., 18:2 (2011), 494–496
[14] Karachanskaya E. V., “Postroenie programmnykh upravlenii s veroyatnostyu 1 dlya dinamicheskoi sistemy s puassonovskimi vozmuscheniyami”, Vestn. Tikhookeanskogo gosuniversiteta, 2011, no. 2(21), 51–60
[15] Karachanskaya E. V., “Obobschennaya formula Ito–Venttselya dlya sluchaya netsentrirovannoi puassonovskoi mery, stokhasticheskii pervyi integral i pervyi integral”, Matem. tr., 17:1 (2014), 99–122
[16] Klebaner F. K., Liptser R. Sh., “Diffuzionnaya model razoreniya. Asimptoticheskii analiz”, TVP, 55:2 (2010), 350–356 | DOI
[17] Kolmanovskii V. B., “Zadachi upravleniya pri nepolnoi informatsii”, Sorosovskii obrazovatelnyi zhurnal, 1999, no. 4, 122–127
[18] Krasovskii N. N., Kotelnikova A. N., “Odna zadacha ob ustoichivom otslezhivanii dvizheniya”, Tr. IMM UrO RAN, 12, no. 1, 2006, 142–156
[19] Krasovskii N. N., Kotelnikova A. N., “Stokhasticheskoe upravlenie v determinirovannoi differentsialnoi igre sblizheniya-ukloneniya”, Avtomat. i telemekh., 2011, no. 2, 93–110
[20] Krylov N. V., “Ob odnom dokazatelstve formuly Ito”, Statistika i upravlenie sluchainymi protsessami, Tr. MIAN, 202, TVP, M., 1993, 170–174
[21] Kuznetsov N. A., Liptser R. Sh., Serebrovskii A. P., “Optimalnoe upravlenie i obrabotka informatsii v nepreryvnom vremeni (lineinaya sistema, kvadratichnyi funktsional)”, Avtomat. i telemekh., 1980, no. 10, 47–53
[22] Kunita Kh., Vatanabe Sh., “O martingalakh, integriruemykh s kvadratom”, Matematika, 15:1 (1971), 66–102
[23] Liptser R. Sh., Shiryaev A. N., Teoriya martingalov, Nauka, M., 1986
[24] Miller B. M., Avrachenkov K. E. i dr., “Zadacha optimalnogo stokhasticheskogo upravleniya potokom dannykh po nepolnoi informatsii”, Probl. peredachi inform., 41:2 (2005), 89–110
[25] Miller B. M., Miller G. B., Semenikhin K. V., “Metody sinteza optimalnogo upravleniya markovskim protsessom s konechnym mnozhestvom sostoyanii pri nalichii ogranichenii”, Avtomat. i telemekh., 2011, no. 2, 111–130
[26] Norin N. V., “Formula Ito dlya rasshirennogo stokhasticheskogo integrala s uprezhdayuschim yadrom”, TVP, 39:4 (1994), 743–765
[27] Rozovskii B. L., “O formule Ito–Venttselya”, Vestnik MGU. Ser. matem. mekhan., 1973, no. 1, 26–32
[28] Khametov V. M., “Optimalnoe upravlenie s zapazdyvaniem skachkoobraznymi sluchainymi protsessami”, Avtomat. i telemekh., 1990, no. 2, 75–86
[29] Khametov V. M., Optimalnye strategii upravlyaemykh v slabom smysle stokhasticheskikh sistem s polnoi informatsiei, Dis. ... d.f.-m.n., M., 2001
[30] Shilov G. E., Matematicheskii analiz. Spetsialnyi kurs, GIFML, M., 1961
[31] Shiryaev A. N., Osnovy stokhasticheskoi finansovoi matematiki, v. 1, 2, Fazis, M., 2004
[32] Borkar V. S., “Controlled diffusion processes”, Probab. Surv., 2 (2005), 213–244 | DOI
[33] Brace A., Fabbri G., Goldys B., An Hilbert Space Approach for a Class of Arbitrage Free Implied Volatilities Models, , 2007 http://mpra.ub.uni-muenchen.de/id/eprint/6321
[34] Es-Sebaiy K., Tudor C., “Levy processes and Itô–Skorokhod integrals”, Theor. Stoch. Process., 14:2(30) (2008), 10–18
[35] Flandoli F., Russo F., “Generalized integration and stochastic ODEs”, Ann. Probab., 30:1 (2002), 270–292 | DOI
[36] Fuhrman M., Hu Y., Tessitore G., “Stochastic maximum principle for optimal control of SPDEs”, Appl. Math. Optim., 68:2 (2013), 181–217 | DOI
[37] Krylov N. V., “A relatively short proof of Itô's formula for SPDEs and its applications”, SPDE: Analysis and Comp., 2013, no. 1, 152–174
[38] Krylov N. V., “On the Itô–Ventzell formula for distribution-valued processes and related topics”, Probab. Theory Related Fields, 150:1–2 (2011), 295–319 | DOI
[39] Lazrieva N. L., Toronjadze T. A., “Asymptotic properties of the maximum likelihood estimator, Itô–Ventzell's formula for semimartingales and its application to the recursive estimation in a general scheme of statistical models”, Proc. of the $1$st World Congress of the Bernoulli Soc. (Tashkent, 1986), v. 2, VNU Sci. Press, Utrecht, 1987, 63–66
[40] Ocone D., Pardoux E., “A generalized Itô–Ventzell formula”, Ann. Inst. H. Poincaré Sect. B, 25:1 (1989), 39–71
[41] Øksendal B., Zhang T., “The Itô–Ventzell formula and forward stochastic differential equations driven by Poisson random measures”, Osaka J. Math., 44 (2007), 207–230
[42] Øksendal B., Sulem A., Zhang T., “Optimal control of stochastic delay equations and time-advanced backward stochastic differential equations”, Adv. Appl. Probab., 43:2 (2011), 572–596 | DOI
[43] Øksendal B., Sulem A., Zhang T., A stochastic HJB equation for optimal control of forward-backward SDEs, Preprint Series: Pure Mathematics, , 2013; arXiv: https://www.duo.uio.no/handle/10852/379121312.1472v1
[44] Purtukhia O., “Itô–Ventzell' formula for antisipative processes”, New Trends in Probab. and Statist., v. 1, VSP, Utrecht, 1991, 503–527
[45] Purtukhia O., Jaoshvili V., “Itô-type formula for Poisson anticipating integral”, Reports of Enlarged Session of the Seminar of I. Vekua Institute of Applied Mathematics, 25 (2001), 103–108
[46] Sennewald K., Wälde K., ““Itô's lemma” and the Bellman equation for Poisson processes: An applied view”, J. Econom., 89:1 (2006), 1–36 | DOI