On the area of a~trihedral on a~hyperbolic plane of positive curvature
Matematičeskie trudy, Tome 17 (2014) no. 2, pp. 184-206.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove a formula for the area of a trihedral on a hyperbolic plane $\widehat H$ of positive curvature via the angles at its vertices.
@article{MT_2014_17_2_a9,
     author = {L. N. Romakina},
     title = {On the area of a~trihedral on a~hyperbolic plane of positive curvature},
     journal = {Matemati\v{c}eskie trudy},
     pages = {184--206},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2014_17_2_a9/}
}
TY  - JOUR
AU  - L. N. Romakina
TI  - On the area of a~trihedral on a~hyperbolic plane of positive curvature
JO  - Matematičeskie trudy
PY  - 2014
SP  - 184
EP  - 206
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2014_17_2_a9/
LA  - ru
ID  - MT_2014_17_2_a9
ER  - 
%0 Journal Article
%A L. N. Romakina
%T On the area of a~trihedral on a~hyperbolic plane of positive curvature
%J Matematičeskie trudy
%D 2014
%P 184-206
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2014_17_2_a9/
%G ru
%F MT_2014_17_2_a9
L. N. Romakina. On the area of a~trihedral on a~hyperbolic plane of positive curvature. Matematičeskie trudy, Tome 17 (2014) no. 2, pp. 184-206. http://geodesic.mathdoc.fr/item/MT_2014_17_2_a9/

[1] Abrosimov N. V., “K resheniyu problemy Zeidelya ob ob'emakh giperbolicheskikh tetraedrov”, Sib. elektron. matem. izv., 6 (2009), 211–218 | MR | Zbl

[2] Abrosimov N. V., Baigonakova G. A., “Giperbolicheskii oktaedr s $mmm$-simmetriei”, Sib. elektron. matem. izv., 10 (2013), 123–140 | MR

[3] Vesnin A. Yu., Repovsh D., “Dvustoronnie otsenki ob'emov pryamougolnykh giperbolicheskikh mnogogrannikov”, Matem. zametki, 89:1 (2011), 12–18 | DOI | MR | Zbl

[4] Kolpakov A. A., Mednykh A. D., Pashkevich M. G., “Formula ob'ema $\mathbb Z_2$-simmetrichnogo sfericheskogo tetraedra”, Sib. matem. zhurn., 52:3 (2011), 582–599 | MR

[5] Lobachevskii N. I., Pangeometriya, v. 3, GITTL, M., 1951

[6] Rozenfeld B. A., Neevklidovy prostranstva, Nauka, M., 1969 | MR | Zbl

[7] Romakina L. N., “Ovalnye linii giperbolicheskoi ploskosti polozhitelnoi krivizny”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 12:3 (2012), 37–44

[8] Romakina L. N., “Analogi formuly Lobachevskogo dlya ugla parallelnosti na giperbolicheskoi ploskosti polozhitelnoi krivizny”, Sib. elektron. matem. izv., 10 (2013), 393–407

[9] Romakina L. N., Geometriya giperbolicheskoi ploskosti polozhitelnoi krivizny. Ch. 1: Trigonometriya, Izd-vo Sarat. un-ta, Saratov, 2013

[10] Romakina L. N., Geometriya giperbolicheskoi ploskosti polozhitelnoi krivizny. Ch. 2: Preobrazovaniya i prostye razbieniya, Izd-vo Sarat. un-ta, Saratov, 2013

[11] Romakina L. N., “Teorema o ploschadi pryamougolnogo trekhrebernika giperbolicheskoi ploskosti polozhitelnoi krivizny”, Dalnevost. matem. zhurn., 13:1 (2013), 127–147 | MR | Zbl

[12] Sabitov D. I., Sabitov I. Kh., “Mnogochleny ob'ema dlya nekotorykh mnogogrannikov v prostranstvakh postoyannoi krivizny”, Model. i analiz inform. sistem, 19:6 (2012), 161–169

[13] Sabitov I. Kh., “Ob odnom metode vychisleniya ob'emov tel”, Sib. elektron. matem. izv., 10 (2013), 615–626

[14] Sokolova D. Yu., “O ploschadi trapetsii na ploskosti Lobachevskogo”, Sib. elektron. matem. izv., 9 (2012), 256–260 | MR

[15] Asmus Im., “Duality between hyperbolic and de Sitter geometry”, J. Geom., 96:1–2 (2009), 11–40 | DOI | MR

[16] Cho Yun, “Trigonometry in extended hyperbolic space and extended de Sitter space”, Bull. Korean Math. Soc., 46:6 (2009), 1099–1133 | DOI | MR | Zbl

[17] Kellerhals R., “On the volume of hyperbolic polyhedra”, Math. Ann., 285:4 (1989), 541–569 | DOI | MR | Zbl

[18] Lambert J. H., “Die Theorie der Parallellinien”, Leipziger Magazin für Reine und Angewandte Mathematik, 1786, 137–164, 325–358

[19] Mednykh A. D., “Brahmagupta formula for cyclic quadrilaterals in the hyperbolic plane”, Sib. elektron. matem. izv., 9 (2012), 247–255 | MR

[20] Ratcliffe J., Foundations of Hyperbolic Manifolds, Graduate Texts in Mathematics, 149, Springer, New York, 2006 | MR | Zbl

[21] Schlenker J. M., “Metriques sur les polyedres hyperboliques convexes”, J. Differential Geom., 48:2 (1998), 323–405 | MR | Zbl