On the local solvability of the two-dimensional Hele--Shaw problem with fractional derivative with respect to time
Matematičeskie trudy, Tome 17 (2014) no. 2, pp. 102-131.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the two-dimensional quasistationary Stefan probem (the Hele–Shaw problem) in which the motion of the free boundary is described by a “fractional” Darcy law. We prove the existence and uniqueness of a classical solution to the free boundary problem for a small time interval.
@article{MT_2014_17_2_a5,
     author = {N. V. Vasil'eva and N. V. Krasnoshchek},
     title = {On the local solvability of the two-dimensional {Hele--Shaw} problem with fractional derivative with respect to time},
     journal = {Matemati\v{c}eskie trudy},
     pages = {102--131},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2014_17_2_a5/}
}
TY  - JOUR
AU  - N. V. Vasil'eva
AU  - N. V. Krasnoshchek
TI  - On the local solvability of the two-dimensional Hele--Shaw problem with fractional derivative with respect to time
JO  - Matematičeskie trudy
PY  - 2014
SP  - 102
EP  - 131
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2014_17_2_a5/
LA  - ru
ID  - MT_2014_17_2_a5
ER  - 
%0 Journal Article
%A N. V. Vasil'eva
%A N. V. Krasnoshchek
%T On the local solvability of the two-dimensional Hele--Shaw problem with fractional derivative with respect to time
%J Matematičeskie trudy
%D 2014
%P 102-131
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2014_17_2_a5/
%G ru
%F MT_2014_17_2_a5
N. V. Vasil'eva; N. V. Krasnoshchek. On the local solvability of the two-dimensional Hele--Shaw problem with fractional derivative with respect to time. Matematičeskie trudy, Tome 17 (2014) no. 2, pp. 102-131. http://geodesic.mathdoc.fr/item/MT_2014_17_2_a5/

[1] Bazalii B. V., “Ob odnom dokazatelstve klassicheskoi razreshimosti zadachi Khele-Shou so svobodnoi granitsei”, Ukr. matem. zh., 50:11 (1998), 1452–1462 | MR

[2] Bazalii B. V., Degtyarev S. P., “O klassicheskoi razreshimosti mnogomernoi zadachi Stefana pri konvektivnom dvizhenii vyazkoi neszhimaemoi zhidkosti”, Matem. sb., 132(174):1 (1987), 3–19 | MR | Zbl

[3] Bizhanova G. I., Solonnikov V. A., “O zadachakh so svobodnymi granitsami dlya parabolicheskikh uravnenii vtorogo poryadka”, Algebra i analiz, 12:6 (2000), 98–139 | MR | Zbl

[4] Voroshilov A. A., Kilbas A. A., “Usloviya suschestvovaniya klassicheskogo resheniya zadachi tipa Koshi dlya uravneniya diffuzii s chastnoi proizvodnoi Rimana–Liuvillya”, Differents. uravneniya, 44:6 (2008), 768–784 | MR | Zbl

[5] Gilbarg D., Trudinger M., Ellipticheskie differentsialnye uravneniya vtorogo poryadka, Nauka, M., 1989 | Zbl

[6] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967 | MR

[7] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1967 | MR

[8] Polubarinova-Kochina P. Ya., Teoriya dvizheniya gruntovykh vod, Nauka, M., 1977 | MR

[9] Pskhu A. V., “Fundamentalnoe reshenie diffuzionno-volnovogo uravneniya drobnogo poryadka”, Izv. RAN. Ser. matem., 73:2 (2009), 141–182 | DOI | MR | Zbl

[10] Solonnikov V. A., “Otsenki resheniya vtoroi nachalno-kraevoi zadachi dlya sistemy Stoksa v prostranstvakh funktsii s nepreryvnymi po Gëlderu proizvodnymi po prostranstvennym peremennym”, Zap. nauchn. sem. POMI, 233, 1996, 233–254 | MR | Zbl

[11] Frolova E. V., “Kvazistatsionarnoe priblizhenie dlya zadachi Stefana”, Problemy mat. analiza, 31, 2005, 167–179 | Zbl

[12] Antontsev S., Gonçalves C., Meirmanov A., “Exact estimates for the classical solutions to the free-boundary problem in the Hele-Shaw cell”, Adv. Differential Equations, 8:10 (2003), 1259–1280 | MR | Zbl

[13] Atkinson C., “Moving boundary problems for time fractional and composition dependent diffusion”, Fract. Calc. Appl. Anal., 15:2 (2012), 207–221 | DOI | MR | Zbl

[14] Bazaliy B. V., Vasylyeva N., “The two-phase Hele-Shaw problem with a nonregular initial interface and without surface tension”, J. Math. Phys. Anal. Geom., 10:1 (2014), 3–43 | MR | Zbl

[15] Bouchaud J.-P., Georges A., “Anomalous diffusion in disordered media: statistical mechanisms, models, and physical applications”, Phys. Rep., 195:4–5 (1990), 127–293 | DOI | MR

[16] Cle'ment Ph., Londen S.-O., Simonett G., “Quasilinear evolutionary equations and continuous interpolation spaces”, J. Differential Equations, 196:2 (2004), 418–447 | DOI | MR | Zbl

[17] Eidelman S. D., Kochubei A. N., “Cauchy problem for fractional diffusion equations”, J. Differential Equations, 199:2 (2004), 211–255 | DOI | MR | Zbl

[18] Escher J., Simonett G., “Classical solutions of multidimensional Hele-Shaw models”, SIAM J. Math. Anal., 28:5 (1997), 1028–1047 | DOI | MR | Zbl

[19] Howison S. D., Bibliography of Free and Moving Boundary Problems in Hele-Shaw and Stokes Flow, , 2006 http://people.maths.ox.ac.uk/howison/Hele-Shaw/

[20] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, Elsevier Science B.V., Amsterdam, 2006 | MR | Zbl

[21] Krasnoschok M., Vasylyeva N., “On nonclassical fractional boundary-value problem for the Laplace operator”, J. Differential Equations, 257:6 (2014), 1814–1839 | DOI | MR | Zbl

[22] Liu J., Xu M., “An exact solution to the moving boundary problem with fractional anomalous diffusion in drug release devices”, ZAMM Z. Angew. Math. Mech., 84:1 (2004), 22–28 | DOI | MR | Zbl

[23] Lunardi A., Analytic Semigroups and Optimal Regularity in Parabolic Problems, Birkhäuser, Basel, 1995 | MR | Zbl

[24] Metzler R., Klafter J., “Boundary value problems for fractional diffusion equations”, Phys. A, 278:1–2 (2000), 107–125 | DOI | MR

[25] Mucha P. B., “On weak solutions to the Stefan problem with Gibbs–Thomson correction”, Differential Integral Equations, 20:7 (2007), 769–792 | MR | Zbl

[26] Sakamoto K., Yamamoto M., “Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems”, J. Math. Anal. Appl., 382:1 (2011), 426–447 | DOI | MR | Zbl

[27] Voller V. R., “An exact solution of a limit case Stefan problem governed by a fractional diffusion equation”, Internat. J. Heat and Mass Transf., 53 (2010), 5622–5625 | DOI | Zbl

[28] Voller V. R., Falcini F., Garra R., “Fractional Stefan problems exhibiting lumped and distributed latent-heat memory effects”, Phys. Rev. E, 87 (2013), 5622–5625 | DOI

[29] Yi F., “Global classical solution of quasi-stationary Stefan free boundary problem”, Appl. Math. Comput., 160:3 (2005), 797–817 | DOI | MR | Zbl