Functions with (non)timelike gradient on a~space-time
Matematičeskie trudy, Tome 17 (2014) no. 2, pp. 41-60.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider some generalization of a problem proposed by V. A. Toponogov for functions with nontimelike gradient on a globally hyperbolic space-time and a specific application of the positive solution of this problem to the cases of a Minkowski space-time and a de Sitter space-time of the first kind. Examples of smooth functions with timelike gradient on Lorentz manifolds are given. The authors obtain some sufficient conditions for level surfaces of functions with timelike gradient on a Lorentz manifold which guarantee that the manifold is globally hyperbolic. A description of the past and the future event horizons for timelike geodesics in a de Sitter space-time of the first kind is given. Some unsolved problems are formulated.
@article{MT_2014_17_2_a2,
     author = {V. N. Berestovskiǐ and I. A. Zubareva},
     title = {Functions with (non)timelike gradient on a~space-time},
     journal = {Matemati\v{c}eskie trudy},
     pages = {41--60},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2014_17_2_a2/}
}
TY  - JOUR
AU  - V. N. Berestovskiǐ
AU  - I. A. Zubareva
TI  - Functions with (non)timelike gradient on a~space-time
JO  - Matematičeskie trudy
PY  - 2014
SP  - 41
EP  - 60
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2014_17_2_a2/
LA  - ru
ID  - MT_2014_17_2_a2
ER  - 
%0 Journal Article
%A V. N. Berestovskiǐ
%A I. A. Zubareva
%T Functions with (non)timelike gradient on a~space-time
%J Matematičeskie trudy
%D 2014
%P 41-60
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2014_17_2_a2/
%G ru
%F MT_2014_17_2_a2
V. N. Berestovskiǐ; I. A. Zubareva. Functions with (non)timelike gradient on a~space-time. Matematičeskie trudy, Tome 17 (2014) no. 2, pp. 41-60. http://geodesic.mathdoc.fr/item/MT_2014_17_2_a2/

[1] Berestovskii V. N., “Ob odnoi zadache V. A. Toponogova”, Matem. tr., 13:1 (2010), 15–22 | MR

[2] Berestovskii V. N., “Ob odnoi zadache V. A. Toponogova i ee obobscheniyakh”, Relativity, Gravity and Geometry, Petrov 2010 Anniversary Symposium on General Relativity and Gravitation (November 1–6, 2010, Kazan), Contributed papers, Kazansk. un-t, Kazan, 2010, 62–65

[3] Berestovskii V. N., “Ob odnoi zadache V. A. Toponogova i ee obobscheniyakh”, Lobachevskie chteniya (Kazan, 1–6 oktyabrya 2010 g.), Tr. Matem. tsentra im. N. I. Lobachevskogo, 42, Kazanskoe matematicheskoe obschestvo, Kazan, 2010, 58–62

[4] Berestovskii V. N., “Ob odnoi zadache V. A. Toponogova”, Teoriya operatorov, kompleksnyi analiz i matematicheskoe modelirovanie, Tr. mezhdunar. nauch. konf. (Volgodonsk, Rossiya, 4–8 iyulya 2011 g.), Tez. dokl., YuMI VNTs i RSO-A, 2011, 29–30

[5] Besse A., Mnogoobraziya s zamknutymi geodezicheskimi, Mir, M., 1981 | MR

[6] Bim Dzh., Erlikh P., Globalnaya lorentseva geometriya, Mir, M., 1985 | MR

[7] Veinberg S., Gravitatsiya i kosmologiya, Mir, M., 1975

[8] Gromol D., Klingenberg V., Meier V., Rimanova geometriya v tselom, Mir, M., 1971

[9] Lere Zh., Giperbolicheskie differentsialnye uravneniya, Nauka, M., 1984 | MR

[10] Mitskevich N. V., Efremov A. P., Nesterov A. I., Dinamika polei v obschei teorii otnositelnosti, Energoatomizdat, M., 1985 | MR

[11] Penrouz R., Struktura prostranstva-vremeni, Mir, M., 1972 | MR

[12] Rozenfeld B. A., Neevklidovy geometrii, GITTL, M., 1953

[13] Fridman A. A., Izbrannye trudy, Nauka, M., 1966 | Zbl

[14] Khoking S., Mir v orekhovoi skorlupke, Amfora, SPb., 2013

[15] Khoking S., Ellis Dzh., Krupnomasshtabnaya struktura prostranstva-vremeni, Mir, M., 1977

[16] Geroch R. P., “Domain of dependence”, J. Mathematical Phys., 11 (1970), 437–449 | DOI | MR | Zbl

[17] Hawking S. W., “The existence of cosmic time functions”, Proc. Roy. Soc. London Ser. A, 308 (1968), 433–435 | DOI

[18] Nomizu K., “Left-invariant Lorentz metrics on Lie groups”, Osaka. J. Math., 16 (1979), 143–150 | MR | Zbl

[19] Whitney H., “Differentiable manifolds”, Ann. of Math. (2), 37:3 (1936), 645–680 | DOI | MR | Zbl