Derivations with values in quasi-normed bimodules of locally measurable operators
Matematičeskie trudy, Tome 17 (2014) no. 1, pp. 3-18
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove that every derivation acting on a von Neumann algebra $\mathcal M$ with values in a quasi-normed bimodule of locally measurable operators affiliated with $\mathcal M$ is necessarily inner.
@article{MT_2014_17_1_a0,
author = {A. F. Ber and G. B. Levitina and V. I. Chilin},
title = {Derivations with values in quasi-normed bimodules of locally measurable operators},
journal = {Matemati\v{c}eskie trudy},
pages = {3--18},
publisher = {mathdoc},
volume = {17},
number = {1},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MT_2014_17_1_a0/}
}
TY - JOUR AU - A. F. Ber AU - G. B. Levitina AU - V. I. Chilin TI - Derivations with values in quasi-normed bimodules of locally measurable operators JO - Matematičeskie trudy PY - 2014 SP - 3 EP - 18 VL - 17 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MT_2014_17_1_a0/ LA - ru ID - MT_2014_17_1_a0 ER -
A. F. Ber; G. B. Levitina; V. I. Chilin. Derivations with values in quasi-normed bimodules of locally measurable operators. Matematičeskie trudy, Tome 17 (2014) no. 1, pp. 3-18. http://geodesic.mathdoc.fr/item/MT_2014_17_1_a0/