Derivations with values in quasi-normed bimodules of locally measurable operators
Matematičeskie trudy, Tome 17 (2014) no. 1, pp. 3-18

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that every derivation acting on a von Neumann algebra $\mathcal M$ with values in a quasi-normed bimodule of locally measurable operators affiliated with $\mathcal M$ is necessarily inner.
@article{MT_2014_17_1_a0,
     author = {A. F. Ber and G. B. Levitina and V. I. Chilin},
     title = {Derivations with values in quasi-normed bimodules of locally measurable operators},
     journal = {Matemati\v{c}eskie trudy},
     pages = {3--18},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2014_17_1_a0/}
}
TY  - JOUR
AU  - A. F. Ber
AU  - G. B. Levitina
AU  - V. I. Chilin
TI  - Derivations with values in quasi-normed bimodules of locally measurable operators
JO  - Matematičeskie trudy
PY  - 2014
SP  - 3
EP  - 18
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2014_17_1_a0/
LA  - ru
ID  - MT_2014_17_1_a0
ER  - 
%0 Journal Article
%A A. F. Ber
%A G. B. Levitina
%A V. I. Chilin
%T Derivations with values in quasi-normed bimodules of locally measurable operators
%J Matematičeskie trudy
%D 2014
%P 3-18
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2014_17_1_a0/
%G ru
%F MT_2014_17_1_a0
A. F. Ber; G. B. Levitina; V. I. Chilin. Derivations with values in quasi-normed bimodules of locally measurable operators. Matematičeskie trudy, Tome 17 (2014) no. 1, pp. 3-18. http://geodesic.mathdoc.fr/item/MT_2014_17_1_a0/