Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MT_2013_16_2_a2, author = {I. S. Borisov and V. A. Zhechev}, title = {Invariance principle for canonical $U$- and $V$-statistics based on dependent observations}, journal = {Matemati\v{c}eskie trudy}, pages = {28--44}, publisher = {mathdoc}, volume = {16}, number = {2}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MT_2013_16_2_a2/} }
TY - JOUR AU - I. S. Borisov AU - V. A. Zhechev TI - Invariance principle for canonical $U$- and $V$-statistics based on dependent observations JO - Matematičeskie trudy PY - 2013 SP - 28 EP - 44 VL - 16 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MT_2013_16_2_a2/ LA - ru ID - MT_2013_16_2_a2 ER -
I. S. Borisov; V. A. Zhechev. Invariance principle for canonical $U$- and $V$-statistics based on dependent observations. Matematičeskie trudy, Tome 16 (2013) no. 2, pp. 28-44. http://geodesic.mathdoc.fr/item/MT_2013_16_2_a2/
[1] Billingsli P., Skhodimost veroyatnostnykh mer, Nauka, M., 1977 | MR
[2] Borisov I. S., Bystrov A. A., “Postroenie stokhasticheskogo integrala ot nesluchainoi funktsii bez usloviya ortogonalnosti integriruyuschei mery”, TVP, 50:1 (2005), 52–80 | DOI | MR | Zbl
[3] Borisov I. S., Bystrov A. A., “Predelnye teoremy dlya kanonicheskikh statistik Mizesa, postroennykh po zavisimym nablyudeniyam”, Sib. matem. zhurn., 47:6 (2006), 1205–1217 | MR | Zbl
[4] Borisov I. S., Volodko N. V., “Ortogonalnye ryady i predelnye teoremy dlya kanonicheskikh $U$- i $V$-statistik ot statsionarno svyazannykh nablyudenii”, Matem. tr., 11:1 (2008), 25–48 | MR | Zbl
[5] Borisov I. S., Zhechev V. A., “Funktsionalnaya predelnaya teorema dlya kanonicheskikh $U$-protsessov ot zavisimykh nablyudenii”, Sib. matem. zhurn., 52:4 (2011), 754–764 | MR | Zbl
[6] Borovkov A. A., Teoriya veroyatnostei, Nauka, M., 1986 | MR | Zbl
[7] Gikhman I. I., Skorokhod A. V., Vvedenie v teoriyu sluchainykh protsessov, Nauka, M., 1965 | MR
[8] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1972
[9] Ronzhin A. F., “Funktsionalnye predelnye teoremy dlya $U$-statistik”, Matem. zametki, 40:5 (1986), 683–696 | MR | Zbl
[10] Dehling H., Denker M., Philipp W., “The almost sure invariance principle for the empirical process of $U$-statistic structure”, Ann. Inst. H. Poincare Probab. Statist., 23:2 (1987), 121–134 | MR | Zbl
[11] Denker M., Grillenberger C., Keller G., “A note on invariance principles for von Mises' statistics”, Metrika, 32:3–4 (1985), 197–214 | DOI | MR | Zbl
[12] Doukhan P., Mixing. Properties and Examples, Lecture Notes in Statistics, 85, Springer-Verlag, New York, 1994 | MR | Zbl
[13] Von Mises R., “On the asymptotic distribution of differentiable statistical functions”, Ann. Math. Statist., 18 (1947), 309–348 | DOI | MR | Zbl
[14] Rubin H., Vitale R., “Asymptotic distribution of symmetric statistics”, Ann. Statist., 8:1 (1980), 165–170 | DOI | MR | Zbl