Invariance principle for canonical $U$- and $V$-statistics based on dependent observations
Matematičeskie trudy, Tome 16 (2013) no. 2, pp. 28-44

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the functional limit theorem, i.e., the invariance principle, for sequences of normalized $U$- and $V$-statistics of arbitrary orders with canonical kernels, defined on samples of growing size from a stationary sequence of random variables under the $\alpha$- or $\varphi$-mixing conditions. The corresponding limit stochastic processes are described as polynomial forms of a sequence of dependent Wiener processes with a known covariance.
@article{MT_2013_16_2_a2,
     author = {I. S. Borisov and V. A. Zhechev},
     title = {Invariance principle for canonical $U$- and $V$-statistics based on dependent observations},
     journal = {Matemati\v{c}eskie trudy},
     pages = {28--44},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2013_16_2_a2/}
}
TY  - JOUR
AU  - I. S. Borisov
AU  - V. A. Zhechev
TI  - Invariance principle for canonical $U$- and $V$-statistics based on dependent observations
JO  - Matematičeskie trudy
PY  - 2013
SP  - 28
EP  - 44
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2013_16_2_a2/
LA  - ru
ID  - MT_2013_16_2_a2
ER  - 
%0 Journal Article
%A I. S. Borisov
%A V. A. Zhechev
%T Invariance principle for canonical $U$- and $V$-statistics based on dependent observations
%J Matematičeskie trudy
%D 2013
%P 28-44
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2013_16_2_a2/
%G ru
%F MT_2013_16_2_a2
I. S. Borisov; V. A. Zhechev. Invariance principle for canonical $U$- and $V$-statistics based on dependent observations. Matematičeskie trudy, Tome 16 (2013) no. 2, pp. 28-44. http://geodesic.mathdoc.fr/item/MT_2013_16_2_a2/