Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MT_2013_16_2_a2, author = {I. S. Borisov and V. A. Zhechev}, title = {Invariance principle for canonical $U$- and $V$-statistics based on dependent observations}, journal = {Matemati\v{c}eskie trudy}, pages = {28--44}, publisher = {mathdoc}, volume = {16}, number = {2}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MT_2013_16_2_a2/} }
TY - JOUR AU - I. S. Borisov AU - V. A. Zhechev TI - Invariance principle for canonical $U$- and $V$-statistics based on dependent observations JO - Matematičeskie trudy PY - 2013 SP - 28 EP - 44 VL - 16 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MT_2013_16_2_a2/ LA - ru ID - MT_2013_16_2_a2 ER -
I. S. Borisov; V. A. Zhechev. Invariance principle for canonical $U$- and $V$-statistics based on dependent observations. Matematičeskie trudy, Tome 16 (2013) no. 2, pp. 28-44. http://geodesic.mathdoc.fr/item/MT_2013_16_2_a2/