Invariance principle for canonical $U$- and $V$-statistics based on dependent observations
Matematičeskie trudy, Tome 16 (2013) no. 2, pp. 28-44
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove the functional limit theorem, i.e., the invariance principle, for sequences of normalized $U$- and $V$-statistics of arbitrary orders with canonical kernels, defined on samples of growing size from a stationary sequence of random variables under the $\alpha$- or $\varphi$-mixing conditions. The corresponding limit stochastic processes are described as polynomial forms of a sequence of dependent Wiener processes with a known covariance.
@article{MT_2013_16_2_a2,
author = {I. S. Borisov and V. A. Zhechev},
title = {Invariance principle for canonical $U$- and $V$-statistics based on dependent observations},
journal = {Matemati\v{c}eskie trudy},
pages = {28--44},
publisher = {mathdoc},
volume = {16},
number = {2},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MT_2013_16_2_a2/}
}
TY - JOUR AU - I. S. Borisov AU - V. A. Zhechev TI - Invariance principle for canonical $U$- and $V$-statistics based on dependent observations JO - Matematičeskie trudy PY - 2013 SP - 28 EP - 44 VL - 16 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MT_2013_16_2_a2/ LA - ru ID - MT_2013_16_2_a2 ER -
I. S. Borisov; V. A. Zhechev. Invariance principle for canonical $U$- and $V$-statistics based on dependent observations. Matematičeskie trudy, Tome 16 (2013) no. 2, pp. 28-44. http://geodesic.mathdoc.fr/item/MT_2013_16_2_a2/