Invariance principle for canonical $U$- and $V$-statistics based on dependent observations
Matematičeskie trudy, Tome 16 (2013) no. 2, pp. 28-44.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the functional limit theorem, i.e., the invariance principle, for sequences of normalized $U$- and $V$-statistics of arbitrary orders with canonical kernels, defined on samples of growing size from a stationary sequence of random variables under the $\alpha$- or $\varphi$-mixing conditions. The corresponding limit stochastic processes are described as polynomial forms of a sequence of dependent Wiener processes with a known covariance.
@article{MT_2013_16_2_a2,
     author = {I. S. Borisov and V. A. Zhechev},
     title = {Invariance principle for canonical $U$- and $V$-statistics based on dependent observations},
     journal = {Matemati\v{c}eskie trudy},
     pages = {28--44},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2013_16_2_a2/}
}
TY  - JOUR
AU  - I. S. Borisov
AU  - V. A. Zhechev
TI  - Invariance principle for canonical $U$- and $V$-statistics based on dependent observations
JO  - Matematičeskie trudy
PY  - 2013
SP  - 28
EP  - 44
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2013_16_2_a2/
LA  - ru
ID  - MT_2013_16_2_a2
ER  - 
%0 Journal Article
%A I. S. Borisov
%A V. A. Zhechev
%T Invariance principle for canonical $U$- and $V$-statistics based on dependent observations
%J Matematičeskie trudy
%D 2013
%P 28-44
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2013_16_2_a2/
%G ru
%F MT_2013_16_2_a2
I. S. Borisov; V. A. Zhechev. Invariance principle for canonical $U$- and $V$-statistics based on dependent observations. Matematičeskie trudy, Tome 16 (2013) no. 2, pp. 28-44. http://geodesic.mathdoc.fr/item/MT_2013_16_2_a2/

[1] Billingsli P., Skhodimost veroyatnostnykh mer, Nauka, M., 1977 | MR

[2] Borisov I. S., Bystrov A. A., “Postroenie stokhasticheskogo integrala ot nesluchainoi funktsii bez usloviya ortogonalnosti integriruyuschei mery”, TVP, 50:1 (2005), 52–80 | DOI | MR | Zbl

[3] Borisov I. S., Bystrov A. A., “Predelnye teoremy dlya kanonicheskikh statistik Mizesa, postroennykh po zavisimym nablyudeniyam”, Sib. matem. zhurn., 47:6 (2006), 1205–1217 | MR | Zbl

[4] Borisov I. S., Volodko N. V., “Ortogonalnye ryady i predelnye teoremy dlya kanonicheskikh $U$- i $V$-statistik ot statsionarno svyazannykh nablyudenii”, Matem. tr., 11:1 (2008), 25–48 | MR | Zbl

[5] Borisov I. S., Zhechev V. A., “Funktsionalnaya predelnaya teorema dlya kanonicheskikh $U$-protsessov ot zavisimykh nablyudenii”, Sib. matem. zhurn., 52:4 (2011), 754–764 | MR | Zbl

[6] Borovkov A. A., Teoriya veroyatnostei, Nauka, M., 1986 | MR | Zbl

[7] Gikhman I. I., Skorokhod A. V., Vvedenie v teoriyu sluchainykh protsessov, Nauka, M., 1965 | MR

[8] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1972

[9] Ronzhin A. F., “Funktsionalnye predelnye teoremy dlya $U$-statistik”, Matem. zametki, 40:5 (1986), 683–696 | MR | Zbl

[10] Dehling H., Denker M., Philipp W., “The almost sure invariance principle for the empirical process of $U$-statistic structure”, Ann. Inst. H. Poincare Probab. Statist., 23:2 (1987), 121–134 | MR | Zbl

[11] Denker M., Grillenberger C., Keller G., “A note on invariance principles for von Mises' statistics”, Metrika, 32:3–4 (1985), 197–214 | DOI | MR | Zbl

[12] Doukhan P., Mixing. Properties and Examples, Lecture Notes in Statistics, 85, Springer-Verlag, New York, 1994 | MR | Zbl

[13] Von Mises R., “On the asymptotic distribution of differentiable statistical functions”, Ann. Math. Statist., 18 (1947), 309–348 | DOI | MR | Zbl

[14] Rubin H., Vitale R., “Asymptotic distribution of symmetric statistics”, Ann. Statist., 8:1 (1980), 165–170 | DOI | MR | Zbl