Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MT_2013_16_1_a7, author = {Yu. G. Nikonorov}, title = {Killing vector fields and the curvature tensor of {a~Riemannian} manifold}, journal = {Matemati\v{c}eskie trudy}, pages = {141--149}, publisher = {mathdoc}, volume = {16}, number = {1}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MT_2013_16_1_a7/} }
Yu. G. Nikonorov. Killing vector fields and the curvature tensor of a~Riemannian manifold. Matematičeskie trudy, Tome 16 (2013) no. 1, pp. 141-149. http://geodesic.mathdoc.fr/item/MT_2013_16_1_a7/
[1] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, 3-e izd., Nauka, M., 1989 | MR
[2] Berestovskii V. N., Nikonorov Yu. G., “Regulyarnye i kvaziregulyarnye izometricheskie potoki na rimanovykh mnogoobraziyakh”, Matem. tr., 10:2 (2007), 3–18 | MR | Zbl
[3] Berestovskii V. N., Nikonorov Yu. G., “Killingovy vektornye polya postoyannoi dliny na rimanovykh mnogoobraziyakh”, Sib. matem. zhurn., 49:3 (2008), 497–514 | MR | Zbl
[4] Besse A., Mnogoobraziya Einshteina, v. I, II, Mir, M., 1990 | MR | Zbl
[5] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, v. I, II, Nauka, M., 1981
[6] Arnol'd V. I., “Sur la géométrie différentielle des groupes de Lie de dimension infinite et ses applications à l'hydrodynamique des fluides parfaits”, Ann. Inst. Fourier (Grenoble), 16:1 (1966), 319–361 | DOI | MR
[7] Berestovskii V. N., Nikonorov Yu. G., “Clifford–Wolf homogeneous Riemannian manifolds”, J. Differential Geom., 82:3 (2009), 467–500 | MR | Zbl
[8] Berger M., A Panoramic View of Riemannian Geometry, Springer-Verlag, Berlin, 2003 | MR
[9] Cheeger J., Ebin D. G., Comparison Theorems in Riemannian Geometry, North-Holland Mathematical Library, 9, North-Holland Publishing Co., Amsterdam–Oxford; American Elsevier Publishing Co., Inc., New York, 1975 | MR | Zbl
[10] Jensen G. R., “The scalar curvature of left-invariant Riemannian metrics”, Indiana Univ. Math. J., 20 (1970/1971), 1125–1144 | DOI | MR
[11] Killing W., “Über die Grundlagen der Geometrie”, J. Reine Angew. Math., 109 (1892), 121–186 (German)
[12] Kowalski O., Szenthe J., “On the existence of homogeneous geodesics in homogeneous Riemannian manifolds”, Geom. Dedicata, 81:1–3 (2000), 209–214 ; “Correction”, Geom. Dedicata, 84 (2001), 331–332 | DOI | MR | Zbl | DOI | MR
[13] Milnor J., “Curvatures of left-invariant metrics on Lie groups”, Adv. Math., 21:3 (1976), 293–329 | DOI | MR | Zbl
[14] O'Neill B., “The fundamental equations of a submersion”, Michigan Math. J., 13:4 (1966), 459–469 | DOI | MR
[15] Nomizu K., “Invariant affine connections on homogeneous spaces”, Amer. J. Math., 76:1 (1954), 33–65 | DOI | MR | Zbl