Killing vector fields and the curvature tensor of a~Riemannian manifold
Matematičeskie trudy, Tome 16 (2013) no. 1, pp. 141-149.

Voir la notice de l'article provenant de la source Math-Net.Ru

We find a convenient expression for the value of the covariant curvature $4$-tensor of an arbitrary Riemannian manifold on a quadruple of its Killing vector fields. With its use, we in particular obtain a simple deduction of the well-known formula to calculate the sectional curvature of a homogeneous Riemannian space.
@article{MT_2013_16_1_a7,
     author = {Yu. G. Nikonorov},
     title = {Killing vector fields and the curvature tensor of {a~Riemannian} manifold},
     journal = {Matemati\v{c}eskie trudy},
     pages = {141--149},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2013_16_1_a7/}
}
TY  - JOUR
AU  - Yu. G. Nikonorov
TI  - Killing vector fields and the curvature tensor of a~Riemannian manifold
JO  - Matematičeskie trudy
PY  - 2013
SP  - 141
EP  - 149
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2013_16_1_a7/
LA  - ru
ID  - MT_2013_16_1_a7
ER  - 
%0 Journal Article
%A Yu. G. Nikonorov
%T Killing vector fields and the curvature tensor of a~Riemannian manifold
%J Matematičeskie trudy
%D 2013
%P 141-149
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2013_16_1_a7/
%G ru
%F MT_2013_16_1_a7
Yu. G. Nikonorov. Killing vector fields and the curvature tensor of a~Riemannian manifold. Matematičeskie trudy, Tome 16 (2013) no. 1, pp. 141-149. http://geodesic.mathdoc.fr/item/MT_2013_16_1_a7/

[1] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, 3-e izd., Nauka, M., 1989 | MR

[2] Berestovskii V. N., Nikonorov Yu. G., “Regulyarnye i kvaziregulyarnye izometricheskie potoki na rimanovykh mnogoobraziyakh”, Matem. tr., 10:2 (2007), 3–18 | MR | Zbl

[3] Berestovskii V. N., Nikonorov Yu. G., “Killingovy vektornye polya postoyannoi dliny na rimanovykh mnogoobraziyakh”, Sib. matem. zhurn., 49:3 (2008), 497–514 | MR | Zbl

[4] Besse A., Mnogoobraziya Einshteina, v. I, II, Mir, M., 1990 | MR | Zbl

[5] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, v. I, II, Nauka, M., 1981

[6] Arnol'd V. I., “Sur la géométrie différentielle des groupes de Lie de dimension infinite et ses applications à l'hydrodynamique des fluides parfaits”, Ann. Inst. Fourier (Grenoble), 16:1 (1966), 319–361 | DOI | MR

[7] Berestovskii V. N., Nikonorov Yu. G., “Clifford–Wolf homogeneous Riemannian manifolds”, J. Differential Geom., 82:3 (2009), 467–500 | MR | Zbl

[8] Berger M., A Panoramic View of Riemannian Geometry, Springer-Verlag, Berlin, 2003 | MR

[9] Cheeger J., Ebin D. G., Comparison Theorems in Riemannian Geometry, North-Holland Mathematical Library, 9, North-Holland Publishing Co., Amsterdam–Oxford; American Elsevier Publishing Co., Inc., New York, 1975 | MR | Zbl

[10] Jensen G. R., “The scalar curvature of left-invariant Riemannian metrics”, Indiana Univ. Math. J., 20 (1970/1971), 1125–1144 | DOI | MR

[11] Killing W., “Über die Grundlagen der Geometrie”, J. Reine Angew. Math., 109 (1892), 121–186 (German)

[12] Kowalski O., Szenthe J., “On the existence of homogeneous geodesics in homogeneous Riemannian manifolds”, Geom. Dedicata, 81:1–3 (2000), 209–214 ; “Correction”, Geom. Dedicata, 84 (2001), 331–332 | DOI | MR | Zbl | DOI | MR

[13] Milnor J., “Curvatures of left-invariant metrics on Lie groups”, Adv. Math., 21:3 (1976), 293–329 | DOI | MR | Zbl

[14] O'Neill B., “The fundamental equations of a submersion”, Michigan Math. J., 13:4 (1966), 459–469 | DOI | MR

[15] Nomizu K., “Invariant affine connections on homogeneous spaces”, Amer. J. Math., 76:1 (1954), 33–65 | DOI | MR | Zbl