On the upper bound in the large deviation principle for sums of random vectors
Matematičeskie trudy, Tome 16 (2013) no. 1, pp. 121-140.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the random walk generated by a sequence of independent identically distributed random vectors. The known upper bound for normalized sums in the large deviation principle was established under the assumption that the Laplace–Stieltjes transform of the distribution of the walk jumps exists in a neighborhood of zero. In the present article, we prove that, for a two-dimensional random walk, this bound holds without any additional assumptions.
@article{MT_2013_16_1_a6,
     author = {A. A. Mogul'skiǐ},
     title = {On the upper bound in the large deviation principle for sums of random vectors},
     journal = {Matemati\v{c}eskie trudy},
     pages = {121--140},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2013_16_1_a6/}
}
TY  - JOUR
AU  - A. A. Mogul'skiǐ
TI  - On the upper bound in the large deviation principle for sums of random vectors
JO  - Matematičeskie trudy
PY  - 2013
SP  - 121
EP  - 140
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2013_16_1_a6/
LA  - ru
ID  - MT_2013_16_1_a6
ER  - 
%0 Journal Article
%A A. A. Mogul'skiǐ
%T On the upper bound in the large deviation principle for sums of random vectors
%J Matematičeskie trudy
%D 2013
%P 121-140
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2013_16_1_a6/
%G ru
%F MT_2013_16_1_a6
A. A. Mogul'skiǐ. On the upper bound in the large deviation principle for sums of random vectors. Matematičeskie trudy, Tome 16 (2013) no. 1, pp. 121-140. http://geodesic.mathdoc.fr/item/MT_2013_16_1_a6/

[1] Borovkov A. A., “Granichnye zadachi dlya sluchainykh bluzhdanii i bolshie ukloneniya v funktsionalnykh prostranstvakh”, TVP, 12:4 (1967), 635–654 | MR | Zbl

[2] Borovkov A. A., Teoriya veroyatnostei, Editorial URSS, M., 2009

[3] Borovkov A. A., Mogulskii A. A., Bolshie ukloneniya i proverka statisticheskikh gipotez, Tr. In-ta matematiki SO RAN, 21, Nauka, Novosibirsk, 1992

[4] Borovkov A. A., Mogulskii A. A., “O printsipakh bolshikh uklonenii v metricheskikh prostranstvakh”, Sib. matem. zhurn., 51:6 (2010), 1251–1269 | MR | Zbl

[5] Borovkov A. A., Mogulskii A. A., “Eksponentsialnye neravenstva chebyshevskogo tipa dlya summ sluchainykh vektorov i dlya traektorii sluchainykh bluzhdanii”, TVP, 56:1 (2011), 3–29 | DOI | MR | Zbl

[6] Borovkov A. A., Mogulskii A. A., “Printsipy bolshikh uklonenii dlya traektorii sluchainykh bluzhdanii. I”, TVP, 56:4 (2011), 627–655 | DOI

[7] Mogulskii A. A., “Bolshie ukloneniya dlya traektorii mnogomernykh sluchainykh bluzhdanii”, TVP, 21:2 (1976), 309–323 | MR | Zbl

[8] Pukhalskii A. A., “K teorii bolshikh uklonenii”, TVP, 38:3 (1993), 553–562 | MR | Zbl

[9] Rokafellar R., Vypuklyi analiz, Mir, M., 1967

[10] Azencott R., “Grandes deviations et applications”, Eighth Saint Flour Probability Summer School–1978 (Saint Flour, 1978), Lecture Notes in Math., 774, Springer, Berlin, 1980, 1–176 | DOI | MR

[11] Dinwoodie I. H., “A note on the upper bound for i.i.d. large deviations”, Ann. Probab., 19:4 (1991), 1732–1736 | DOI | MR | Zbl

[12] Slaby M., “On the upper bound for large deviations of sums of i.i.d. random vectors”, Ann. Probab., 16:3 (1988), 978–990 | DOI | MR | Zbl