Derivations on ideals in commutative $AW^*$-algebras
Matematičeskie trudy, Tome 16 (2013) no. 1, pp. 63-88

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathcal A$ be a commutative $AW^*$-algebra.We denote by $S(\mathcal A)$ the $*$-algebra of measurable operators that are affiliated with $\mathcal A$. For an ideal $\mathcal I$ in $\mathcal A$, let $s(\mathcal I)$ denote the support of $\mathcal I$. Let $\mathbb Y$ be a solid linear subspace in $S(\mathcal A)$. We find necessary and sufficient conditions for existence of nonzero band preserving derivations from $\mathcal I$ to $\mathbb Y$. We prove that no nonzero band preserving derivation from $\mathcal I$ to $\mathbb Y$ exists if either $\mathbb Y\subset\mathcal A$ or $\mathbb Y$ is a quasi-normed solid space. We also show that a nonzero band preserving derivation from $\mathcal I$ to $S(\mathcal A)$ exists if and only if the boolean algebra of projections in the $AW^*$-algebra $s(\mathcal I)\mathcal A$ is not $\sigma$-distributive.
@article{MT_2013_16_1_a4,
     author = {G. B. Levitina and V. I. Chilin},
     title = {Derivations on ideals in commutative $AW^*$-algebras},
     journal = {Matemati\v{c}eskie trudy},
     pages = {63--88},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2013_16_1_a4/}
}
TY  - JOUR
AU  - G. B. Levitina
AU  - V. I. Chilin
TI  - Derivations on ideals in commutative $AW^*$-algebras
JO  - Matematičeskie trudy
PY  - 2013
SP  - 63
EP  - 88
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2013_16_1_a4/
LA  - ru
ID  - MT_2013_16_1_a4
ER  - 
%0 Journal Article
%A G. B. Levitina
%A V. I. Chilin
%T Derivations on ideals in commutative $AW^*$-algebras
%J Matematičeskie trudy
%D 2013
%P 63-88
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2013_16_1_a4/
%G ru
%F MT_2013_16_1_a4
G. B. Levitina; V. I. Chilin. Derivations on ideals in commutative $AW^*$-algebras. Matematičeskie trudy, Tome 16 (2013) no. 1, pp. 63-88. http://geodesic.mathdoc.fr/item/MT_2013_16_1_a4/