On a~pursuit-evasion problem under a~linear change of the pursuer resource
Matematičeskie trudy, Tome 15 (2012) no. 2, pp. 159-171.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a pursuit-evasion problem in the case when an integral constraint is imposed on the pursuer control class which is a generalization of integral as well as geometric constraints and only a geometric constraint is imposed on the evader control class. We prove the theorem of alternative. The optimal pursuit problem is solved by a generalized parallel pursuit strategy, and lower bounds for the distance between the pursuer and the evader are established in the pursuit problem.
@article{MT_2012_15_2_a9,
     author = {B. T. Samatov},
     title = {On a~pursuit-evasion problem under a~linear change of the pursuer resource},
     journal = {Matemati\v{c}eskie trudy},
     pages = {159--171},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2012_15_2_a9/}
}
TY  - JOUR
AU  - B. T. Samatov
TI  - On a~pursuit-evasion problem under a~linear change of the pursuer resource
JO  - Matematičeskie trudy
PY  - 2012
SP  - 159
EP  - 171
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2012_15_2_a9/
LA  - ru
ID  - MT_2012_15_2_a9
ER  - 
%0 Journal Article
%A B. T. Samatov
%T On a~pursuit-evasion problem under a~linear change of the pursuer resource
%J Matematičeskie trudy
%D 2012
%P 159-171
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2012_15_2_a9/
%G ru
%F MT_2012_15_2_a9
B. T. Samatov. On a~pursuit-evasion problem under a~linear change of the pursuer resource. Matematičeskie trudy, Tome 15 (2012) no. 2, pp. 159-171. http://geodesic.mathdoc.fr/item/MT_2012_15_2_a9/

[1] Azamov A. A., “O zadache kachestva dlya igr prostogo presledovaniya s ogranicheniem”, Serdika, 12:1 (1986), 38–43 | MR | Zbl

[2] Azamov A. A., Kuchkarov A. Sh., Samatov B. T., “O svyazi mezhdu razreshimostyu zadach presledovaniya, upravlyaemosti i ustoichivosti v tselom v lineinykh sistemakh s raznotipnymi ogranicheniyami”, Prikl. mat. i mekh., 71:2 (2007), 259–263 | MR | Zbl

[3] Aizeks R., Differentsialnye igry, Mir, M., 1967 | MR

[4] Alekseev V. M., Tikhomirov V. M., Fomin S. V., Optimalnoe upravlenie, Nauka, M., 1979 | MR

[5] Grigorenko N. L., Matematicheskie metody upravleniya neskolkimi dinamicheskimi protsessami, Izd-vo MGU, M., 1980

[6] Kim D. P., Metody poiska i presledovaniya podvizhnykh ob'ektov, Nauka, M., 1989 | MR

[7] Krasovskii N. N., Upravlenie dinamicheskoi sistemoi. Zadacha o minimume garantirovannogo rezultata, Nauka, M., 1985 | MR

[8] Petrosyan L. A., “Ob odnom semeistve differentsialnykh igr na vyzhivanie v prostranstve $\mathbb R^n$”, Dokl. AN SSSR, 161:1 (1965), 52–54 | MR | Zbl

[9] Petrosyan L. A., Differentsialnye igry presledovaniya, Izd-vo LGU, L., 1977 | MR | Zbl

[10] Pontryagin L. S., Izbrannye nauchnye trudy, v. II, Differentsialnye uravneniya. Teoriya operatorov. Optimalnoe upravlenie. Differentsialnye igry, Nauka, M., 1988

[11] Pshenichnyi B. N., “Prostoe presledovanie neskolkimi ob'ektami”, Kibernetika, 1976, no. 3, 145–146

[12] Pshenichnyi B. N., Ostapenko V. V., Differentsialnye igry, Naukova dumka, Kiev, 1992 | MR

[13] Rikhsiev B. B., Differentsialnye igry s prostymi dvizheniyami, Fan, Tashkent, 1989 | MR | Zbl

[14] Satimov N. Yu., Metody resheniya zadachi presledovaniya v teorii differentsialnykh igr, Izd-vo NUUz, Tashkent, 2003

[15] Subbotin A. I., Chentsov A. G., Optimizatsiya garantii v zadachakh upravleniya, Nauka, M., 1981 | MR | Zbl

[16] Ushakov V. N., “Ekstremalnye strategii v differentsialnykh igrakh s integralnymi ogranicheniyami”, Prikl. mat. i mekh., 36:1 (1972), 15–23 | MR | Zbl

[17] Filippov A. F., Differentsialnye uravneniya s razryvnoi pravoi chastyu, Nauka, M., 1985 | MR

[18] Formalskii A. M., Upravlyaemost i ustoichivost sistem s ogranichennymi resursami, Nauka, M., 1974 | MR

[19] Chernousko F. L., Melikyan A. A., Igrovye zadachi upravleniya i poiska, Nauka, M., 1978 | MR

[20] Chikrii A. A., Belousov A. A., “O lineinykh differentsialnykh igrakh s integralnymi ogranicheniyami”, Tr. IMM UrO RAN, 15, no. 4, 2009, 290–301

[21] Azamov A. A., Samatov B. T., $\Pi$-Strategy, Preprint, National Univ. of Uzb., Tashkent, 2000

[22] Azamov A. A., Samatov B. T., “The $\Pi$-strategy: analogies and applications”, Contributions to Game Theory and Management, The 4th Int. Conf. Game Theory and Management (June 28–30, 2010, St. Petersburg, Russia), v. IV, Graduate School of Management, St. Petersburg Univ., St. Petersburg, 2010, 33–47 | MR

[23] Chikrii A. A., Conflict-Controlled Processes, Kluwer Acad. Publ., Boston–London–Dordrecht, 1997 | MR | Zbl

[24] Samatov B. T., “The differential game with “A survival zone” with different classes of admissible control functions”, Game Theory and Applications, 13, Nova Sci. Publ., New York, 2008, 143–150 | MR