The expansion theorem for the deviation integral
Matematičeskie trudy, Tome 15 (2012) no. 2, pp. 127-145.

Voir la notice de l'article provenant de la source Math-Net.Ru

The so-called deviation integral (functional) describes the logarithmic asymptotics of the probabilities of large deviations for random walks generated by sums of random variables or vectors. Here an important role is played by the expansion theorem for the deviation integral in which, for an arbitrary function of bounded variation, the deviation integral is represented as the sum of suitable integrals of the absolutely continuous, singular, and discrete components composing this function. The expansion theorem for the deviation integral was proved by A. A. Borovkov and the author in [9] under some simplifying assumptions. In this article, we waive these assumptions and prove the expansion theorem in the general form.
@article{MT_2012_15_2_a7,
     author = {A. A. Mogul'skiǐ},
     title = {The expansion theorem  for the deviation integral},
     journal = {Matemati\v{c}eskie trudy},
     pages = {127--145},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2012_15_2_a7/}
}
TY  - JOUR
AU  - A. A. Mogul'skiǐ
TI  - The expansion theorem  for the deviation integral
JO  - Matematičeskie trudy
PY  - 2012
SP  - 127
EP  - 145
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2012_15_2_a7/
LA  - ru
ID  - MT_2012_15_2_a7
ER  - 
%0 Journal Article
%A A. A. Mogul'skiǐ
%T The expansion theorem  for the deviation integral
%J Matematičeskie trudy
%D 2012
%P 127-145
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2012_15_2_a7/
%G ru
%F MT_2012_15_2_a7
A. A. Mogul'skiǐ. The expansion theorem  for the deviation integral. Matematičeskie trudy, Tome 15 (2012) no. 2, pp. 127-145. http://geodesic.mathdoc.fr/item/MT_2012_15_2_a7/

[1] Borovkov A. A., “Granichnye zadachi dlya sluchainykh bluzhdanii i bolshie ukloneniya v funktsionalnykh prostranstvakh”, TVP, 12:4 (1967), 635–654 | MR | Zbl

[2] Borovkov A. A., “Skhodimost raspredelenii funktsionalov ot sluchainykh protsessov”, UMN, 27:1(163) (1972), 3–41 | MR | Zbl

[3] Borovkov A. A., Teoriya veroyatnostei, Editorial URSS, M., 2009

[4] Borovkov A. A., Mogulskii A. A., Bolshie ukloneniya i proverka statisticheskikh gipotez, Tr. In-ta matematiki SO RAN, 21, Nauka, Novosibirsk, 1992

[5] Borovkov A. A., Mogulskii A. A., “Veroyatnosti bolshikh uklonenii dlya summ nezavisimykh sluchainykh vektorov na granitse i vne kramerovskoi zony. I”, TVP, 53:2 (2008), 336–344 | DOI | Zbl

[6] Borovkov A. A., Mogulskii A. A., “O printsipakh bolshikh uklonenii v metricheskikh prostranstvakh”, Sib. matem. zhurn., 51:6 (2010), 1251–1269 | MR | Zbl

[7] Borovkov A. A., Mogulskii A. A., “Svoistva funktsionala ot traektorii, voznikayuschego pri analize veroyatnostei bolshikh uklonenii sluchainykh bluzhdanii”, Sib. matem. zhurn., 52:4 (2011), 777–795 | MR | Zbl

[8] Borovkov A. A., Mogulskii A. A., “Eksponentsialnye neravenstva chebyshevskogo tipa dlya summ sluchainykh vektorov i dlya traektorii sluchainykh bluzhdanii”, TVP, 56:1 (2011), 3–29 | DOI | MR | Zbl

[9] Borovkov A. A., Mogulskii A. A., “Printsipy bolshikh uklonenii dlya traektorii sluchainykh bluzhdanii. I”, TVP, 56:4 (2011), 627–655 | DOI

[10] Mogulskii A. A., “Bolshie ukloneniya dlya traektorii mnogomernykh sluchainykh bluzhdanii”, TVP, 21:2 (1976), 309–323 | MR | Zbl

[11] Riss F., Sekefalvi-Nad B., Lektsii po funktsionalnomu analizu, Mir, M., 1979 | MR

[12] Rokafellar R., Vypuklyi analiz, Mir, M., 1967

[13] Skorokhod A. V., “Predelnye teoremy dlya sluchainykh protsessov”, TVP, 1:3 (1956), 289–319 | Zbl