Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MT_2012_15_2_a6, author = {N. V. Maslova and D. O. Revin}, title = {Finite groups whose maximal subgroups have the {Hall} property}, journal = {Matemati\v{c}eskie trudy}, pages = {105--126}, publisher = {mathdoc}, volume = {15}, number = {2}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MT_2012_15_2_a6/} }
N. V. Maslova; D. O. Revin. Finite groups whose maximal subgroups have the Hall property. Matematičeskie trudy, Tome 15 (2012) no. 2, pp. 105-126. http://geodesic.mathdoc.fr/item/MT_2012_15_2_a6/
[1] Golod E. S., “O nil-algebrakh i finitno approksimiruemykh $p$-gruppakh”, Izv. AN SSSR. Ser. matem., 28:2 (1964), 273–276 | MR | Zbl
[2] Golod E. S., Shafarevich I. R., “O bashne polei klassov”, Izv. AN SSSR. Ser. matem., 28:2 (1964), 261–272 | MR | Zbl
[3] Zelmanov E. I., “Reshenie oslablennoi problemy Bernsaida dlya grupp nechetnogo pokazatelya”, Izv. AN SSSR. Ser. matem., 54:1 (1990), 42–59 | MR | Zbl
[4] Zelmanov E. I., “Reshenie oslablennoi problemy Bernsaida dlya 2-grupp”, Matem. sb., 182:4 (1991), 568–592 | MR | Zbl
[5] Kargapolov M. I., Merzlyakov Yu. I., Osnovy teorii grupp, Nauka, M., 1982 | MR | Zbl
[6] Kozlov S. D., “Maksimalnye $p$-moduli Frattini minimalnykh nerazreshimykh grupp, obladayuschikh tsiklicheskimi silovskimi $p$-podgruppami”, Algebra i logika, 24:3 (1985), 352–364 | MR | Zbl
[7] Kondratev A. S., Gruppy i algebry Li, IMM UrO RAN, Ekaterinburg, 2010
[8] Kourovskaya tetrad. Nereshennye voprosy teorii grupp, 17-e izd., dopoln., vklyuchayuschee arkhiv reshennykh zadach, Izd-vo In-ta matematiki SO RAN, Novosibirsk, 2010
[9] Levchuk V. M., Likharev A. G., “Konechnye prostye gruppy s dopolnyaemymi maksimalnymi podgruppami”, Sib. matem. zhurn., 47:4 (2006), 798–810 | MR | Zbl
[10] Maslova N. V., “Neabelevy kompozitsionnye faktory konechnoi gruppy, vse maksimalnye podgruppy kotoroi khollovy”, Sib. matem. zhurn., 53:5 (2012), 1065–1076
[11] Monakhov V. S., “Konechnye $\pi$-razreshimye gruppy s khollovymi maksimalnymi podgruppami”, Matem. zametki, 84:3 (2008), 390–394 | DOI | MR | Zbl
[12] Tyutyanov V. N., “Konechnye gruppy s dopolnyaemymi podgruppami”, Izv. Gomelskogo gos. un-ta im. F. Skoriny, 36:3 (2006), 178–183
[13] Tyutyanov V. N., Tikhonenko T. V., “Konechnye gruppy s maksimalnymi khollovymi podgruppami”, Izv. Gomelskogo gos. un-ta im. F. Skoriny, 50:5 (2008), 198–206
[14] Aschbacher M., Finite Group Theory, Cambridge Univ. Press, Cambridge, 1986 | MR | Zbl
[15] ATLAS of Finite Group Representations, http://brauer.maths.qmul.ac.uk/Atlas/
[16] Conway J. H., Curtis R. T., Norton S. P., Parker R. A., Wilson R. A., Atlas of Finite Groups, Maximal subgroups and ordinary characters for simple groups, Clarendon Press, Oxford, 1985 | MR | Zbl
[17] Cossey J., Kegel O. H., Kovács G., “Maximal Frattini extensions”, Arch. Math., 35:3 (1980), 210–217 | DOI | MR | Zbl
[18] Dixon M. R., Sylow theory, formations, and Fitting classes in locally finite groups, Series in Algebra, 2, World Sci. Publ. Co. Inc., River Edge, NJ, 1994 | MR | Zbl
[19] Doerk K., Hawkes T., Finite soluble groups, de Gruyter Expositions in Mathematics, 4, Walter de Gruyter, Berlin–New York, 1992 | MR
[20] Gaschütz W., “Über modulare Darstellungen endlicher Gruppen, die von freien Gruppen induziert werden”, Math. Z., 60:3 (1954), 274–286 | DOI | MR
[21] Hall P., “A note on soluble groups”, J. London Math. Soc., 3 (1928), 98–105 | DOI | MR | Zbl
[22] Hall P., “Theorems like Sylow`s”, Proc. London Math. Soc. (3), 6:22 (1956), 286–304 | DOI | MR | Zbl
[23] Hall P., Higman G., “On the $p$-length of $p$-soluble groups and reduction theorem for Burnside's problem”, Proc. London Math. Soc. (3), 6:21 (1956), 286–304 | DOI | MR | Zbl
[24] Neumann H., Varieties of Groups, Ereb. Math., 37, Springer-Verlag, Berlin–Heidelberg–New York, 1967
[25] Zassenhaus H., Lehrbuch der Gruppentheorie, v. I, Teubner, Leipzig–Berlin, 1937 | Zbl