Finite groups whose maximal subgroups have the Hall property
Matematičeskie trudy, Tome 15 (2012) no. 2, pp. 105-126

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the structure of finite groups whose maximal subgroups have the Hall property. We prove that such a group $G$ has at most one non-Abelian composition factor, the solvable radical $S(G)$ admits a Sylow series, the action of $G$ on sections of this series is irreducible, the series is invariant with respect to this action, and the quotient group $G/S(G)$ is either trivial or isomorphic to $\mathrm{PSL}_2(7)$, $\mathrm{PSL}_2(11)$, or $\mathrm{PSL}_5(2)$. As a corollary, we show that every maximal subgroup of $G$ is complemented.
@article{MT_2012_15_2_a6,
     author = {N. V. Maslova and D. O. Revin},
     title = {Finite groups whose maximal subgroups have the {Hall} property},
     journal = {Matemati\v{c}eskie trudy},
     pages = {105--126},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2012_15_2_a6/}
}
TY  - JOUR
AU  - N. V. Maslova
AU  - D. O. Revin
TI  - Finite groups whose maximal subgroups have the Hall property
JO  - Matematičeskie trudy
PY  - 2012
SP  - 105
EP  - 126
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2012_15_2_a6/
LA  - ru
ID  - MT_2012_15_2_a6
ER  - 
%0 Journal Article
%A N. V. Maslova
%A D. O. Revin
%T Finite groups whose maximal subgroups have the Hall property
%J Matematičeskie trudy
%D 2012
%P 105-126
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2012_15_2_a6/
%G ru
%F MT_2012_15_2_a6
N. V. Maslova; D. O. Revin. Finite groups whose maximal subgroups have the Hall property. Matematičeskie trudy, Tome 15 (2012) no. 2, pp. 105-126. http://geodesic.mathdoc.fr/item/MT_2012_15_2_a6/