Finite groups whose maximal subgroups have the Hall property
Matematičeskie trudy, Tome 15 (2012) no. 2, pp. 105-126.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the structure of finite groups whose maximal subgroups have the Hall property. We prove that such a group $G$ has at most one non-Abelian composition factor, the solvable radical $S(G)$ admits a Sylow series, the action of $G$ on sections of this series is irreducible, the series is invariant with respect to this action, and the quotient group $G/S(G)$ is either trivial or isomorphic to $\mathrm{PSL}_2(7)$, $\mathrm{PSL}_2(11)$, or $\mathrm{PSL}_5(2)$. As a corollary, we show that every maximal subgroup of $G$ is complemented.
@article{MT_2012_15_2_a6,
     author = {N. V. Maslova and D. O. Revin},
     title = {Finite groups whose maximal subgroups have the {Hall} property},
     journal = {Matemati\v{c}eskie trudy},
     pages = {105--126},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2012_15_2_a6/}
}
TY  - JOUR
AU  - N. V. Maslova
AU  - D. O. Revin
TI  - Finite groups whose maximal subgroups have the Hall property
JO  - Matematičeskie trudy
PY  - 2012
SP  - 105
EP  - 126
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2012_15_2_a6/
LA  - ru
ID  - MT_2012_15_2_a6
ER  - 
%0 Journal Article
%A N. V. Maslova
%A D. O. Revin
%T Finite groups whose maximal subgroups have the Hall property
%J Matematičeskie trudy
%D 2012
%P 105-126
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2012_15_2_a6/
%G ru
%F MT_2012_15_2_a6
N. V. Maslova; D. O. Revin. Finite groups whose maximal subgroups have the Hall property. Matematičeskie trudy, Tome 15 (2012) no. 2, pp. 105-126. http://geodesic.mathdoc.fr/item/MT_2012_15_2_a6/

[1] Golod E. S., “O nil-algebrakh i finitno approksimiruemykh $p$-gruppakh”, Izv. AN SSSR. Ser. matem., 28:2 (1964), 273–276 | MR | Zbl

[2] Golod E. S., Shafarevich I. R., “O bashne polei klassov”, Izv. AN SSSR. Ser. matem., 28:2 (1964), 261–272 | MR | Zbl

[3] Zelmanov E. I., “Reshenie oslablennoi problemy Bernsaida dlya grupp nechetnogo pokazatelya”, Izv. AN SSSR. Ser. matem., 54:1 (1990), 42–59 | MR | Zbl

[4] Zelmanov E. I., “Reshenie oslablennoi problemy Bernsaida dlya 2-grupp”, Matem. sb., 182:4 (1991), 568–592 | MR | Zbl

[5] Kargapolov M. I., Merzlyakov Yu. I., Osnovy teorii grupp, Nauka, M., 1982 | MR | Zbl

[6] Kozlov S. D., “Maksimalnye $p$-moduli Frattini minimalnykh nerazreshimykh grupp, obladayuschikh tsiklicheskimi silovskimi $p$-podgruppami”, Algebra i logika, 24:3 (1985), 352–364 | MR | Zbl

[7] Kondratev A. S., Gruppy i algebry Li, IMM UrO RAN, Ekaterinburg, 2010

[8] Kourovskaya tetrad. Nereshennye voprosy teorii grupp, 17-e izd., dopoln., vklyuchayuschee arkhiv reshennykh zadach, Izd-vo In-ta matematiki SO RAN, Novosibirsk, 2010

[9] Levchuk V. M., Likharev A. G., “Konechnye prostye gruppy s dopolnyaemymi maksimalnymi podgruppami”, Sib. matem. zhurn., 47:4 (2006), 798–810 | MR | Zbl

[10] Maslova N. V., “Neabelevy kompozitsionnye faktory konechnoi gruppy, vse maksimalnye podgruppy kotoroi khollovy”, Sib. matem. zhurn., 53:5 (2012), 1065–1076

[11] Monakhov V. S., “Konechnye $\pi$-razreshimye gruppy s khollovymi maksimalnymi podgruppami”, Matem. zametki, 84:3 (2008), 390–394 | DOI | MR | Zbl

[12] Tyutyanov V. N., “Konechnye gruppy s dopolnyaemymi podgruppami”, Izv. Gomelskogo gos. un-ta im. F. Skoriny, 36:3 (2006), 178–183

[13] Tyutyanov V. N., Tikhonenko T. V., “Konechnye gruppy s maksimalnymi khollovymi podgruppami”, Izv. Gomelskogo gos. un-ta im. F. Skoriny, 50:5 (2008), 198–206

[14] Aschbacher M., Finite Group Theory, Cambridge Univ. Press, Cambridge, 1986 | MR | Zbl

[15] ATLAS of Finite Group Representations, http://brauer.maths.qmul.ac.uk/Atlas/

[16] Conway J. H., Curtis R. T., Norton S. P., Parker R. A., Wilson R. A., Atlas of Finite Groups, Maximal subgroups and ordinary characters for simple groups, Clarendon Press, Oxford, 1985 | MR | Zbl

[17] Cossey J., Kegel O. H., Kovács G., “Maximal Frattini extensions”, Arch. Math., 35:3 (1980), 210–217 | DOI | MR | Zbl

[18] Dixon M. R., Sylow theory, formations, and Fitting classes in locally finite groups, Series in Algebra, 2, World Sci. Publ. Co. Inc., River Edge, NJ, 1994 | MR | Zbl

[19] Doerk K., Hawkes T., Finite soluble groups, de Gruyter Expositions in Mathematics, 4, Walter de Gruyter, Berlin–New York, 1992 | MR

[20] Gaschütz W., “Über modulare Darstellungen endlicher Gruppen, die von freien Gruppen induziert werden”, Math. Z., 60:3 (1954), 274–286 | DOI | MR

[21] Hall P., “A note on soluble groups”, J. London Math. Soc., 3 (1928), 98–105 | DOI | MR | Zbl

[22] Hall P., “Theorems like Sylow`s”, Proc. London Math. Soc. (3), 6:22 (1956), 286–304 | DOI | MR | Zbl

[23] Hall P., Higman G., “On the $p$-length of $p$-soluble groups and reduction theorem for Burnside's problem”, Proc. London Math. Soc. (3), 6:21 (1956), 286–304 | DOI | MR | Zbl

[24] Neumann H., Varieties of Groups, Ereb. Math., 37, Springer-Verlag, Berlin–Heidelberg–New York, 1967

[25] Zassenhaus H., Lehrbuch der Gruppentheorie, v. I, Teubner, Leipzig–Berlin, 1937 | Zbl