Complexity of quasivariety lattices for varieties of differential groupoids.~II
Matematičeskie trudy, Tome 15 (2012) no. 2, pp. 89-99.

Voir la notice de l'article provenant de la source Math-Net.Ru

We continue the study of the lattice of quasivarieties of differential groupoids. We suggest a method for constructing differential groupoids from graphs. We prove that, for every variety of differential groupoids, the cardinality of the lattice of subquasivarieties is either finite or equal to $2^\omega$.
@article{MT_2012_15_2_a4,
     author = {A. V. Kravchenko},
     title = {Complexity of quasivariety lattices for varieties of differential {groupoids.~II}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {89--99},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2012_15_2_a4/}
}
TY  - JOUR
AU  - A. V. Kravchenko
TI  - Complexity of quasivariety lattices for varieties of differential groupoids.~II
JO  - Matematičeskie trudy
PY  - 2012
SP  - 89
EP  - 99
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2012_15_2_a4/
LA  - ru
ID  - MT_2012_15_2_a4
ER  - 
%0 Journal Article
%A A. V. Kravchenko
%T Complexity of quasivariety lattices for varieties of differential groupoids.~II
%J Matematičeskie trudy
%D 2012
%P 89-99
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2012_15_2_a4/
%G ru
%F MT_2012_15_2_a4
A. V. Kravchenko. Complexity of quasivariety lattices for varieties of differential groupoids.~II. Matematičeskie trudy, Tome 15 (2012) no. 2, pp. 89-99. http://geodesic.mathdoc.fr/item/MT_2012_15_2_a4/

[1] Budkin A. I., Gorbunov V. A., “K teorii kvazimnogoobrazii algebraicheskikh sistem”, Algebra i logika, 14:2 (1975), 123–142 | MR | Zbl

[2] Gorbunov V. A., Algebraicheskaya teoriya kvazimnogoobrazii, Nauchnaya kniga, Novosibirsk, 1999 | Zbl

[3] Kravchenko A. V., “Slozhnost reshetok kvazimnogoobrazii dlya mnogoobrazii differentsialnykh gruppoidov”, Matem. tr., 12:1 (2009), 26–39 | MR | Zbl

[4] Ježek J., Kepka T., Medial Groupoids, Academia Nakladatelství Československé Akademie Ved, Praha, 1983 | MR

[5] Kravchenko A. V., “On the lattices of quasivarieties of differential groupoids”, Comment. Math. Univ. Carolin., 49:1 (2008), 11–17 | MR | Zbl

[6] Kravchenko A. V., Pilitowska A., Romanowska A., Stanovský D., “Differential modes”, Internat. J. Algebra Comput., 18:3 (2008), 567–588 | DOI | MR | Zbl

[7] Płonka J., “On algebras with $n$ distinct essentially $n$-ary operations”, Algebra Universalis, 1:1 (1971), 73–79 | DOI | MR

[8] Płonka J., “On $k$-cyclic groupoids”, Math. Japon., 30:3 (1985), 371–382 | MR

[9] Romanowska A., “On some representations of groupoid modes satisfying the reduction law”, Demonstratio Math., 21:4 (1988), 943–960 | MR | Zbl

[10] Romanowska A., Roszkowska B., “On some groupoid modes”, Demonstratio Math., 20:1–2 (1987), 277–290 | MR | Zbl

[11] Romanowska A., Roszkowska B., “Representation of $n$-cyclic groupoids”, Algebra Universalis, 26:1 (1989), 7–15 | DOI | MR | Zbl

[12] Romanowska A. B., Smith J. D. H., “Differential groupoids”, Contributions to General Algebra, Proc. Vienna Conf. (Vienna, 1990), v. 7, Teubner, Stuttgart, 1991, 283–290 | MR

[13] Romanowska A. B., Smith J. D. H., Modes, World Scientific Publishing Co., Singapore, 2002 | MR | Zbl