Complexity of quasivariety lattices for varieties of differential groupoids.~II
Matematičeskie trudy, Tome 15 (2012) no. 2, pp. 89-99

Voir la notice de l'article provenant de la source Math-Net.Ru

We continue the study of the lattice of quasivarieties of differential groupoids. We suggest a method for constructing differential groupoids from graphs. We prove that, for every variety of differential groupoids, the cardinality of the lattice of subquasivarieties is either finite or equal to $2^\omega$.
@article{MT_2012_15_2_a4,
     author = {A. V. Kravchenko},
     title = {Complexity of quasivariety lattices for varieties of differential {groupoids.~II}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {89--99},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2012_15_2_a4/}
}
TY  - JOUR
AU  - A. V. Kravchenko
TI  - Complexity of quasivariety lattices for varieties of differential groupoids.~II
JO  - Matematičeskie trudy
PY  - 2012
SP  - 89
EP  - 99
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2012_15_2_a4/
LA  - ru
ID  - MT_2012_15_2_a4
ER  - 
%0 Journal Article
%A A. V. Kravchenko
%T Complexity of quasivariety lattices for varieties of differential groupoids.~II
%J Matematičeskie trudy
%D 2012
%P 89-99
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2012_15_2_a4/
%G ru
%F MT_2012_15_2_a4
A. V. Kravchenko. Complexity of quasivariety lattices for varieties of differential groupoids.~II. Matematičeskie trudy, Tome 15 (2012) no. 2, pp. 89-99. http://geodesic.mathdoc.fr/item/MT_2012_15_2_a4/