Proof of Gromov's theorem on homogeneous nilpotent approximation for vector fields of class~$C^1$
Matematičeskie trudy, Tome 15 (2012) no. 2, pp. 72-88.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article is devoted to the asymptotic properties of the vector fields $\widetilde X^g_i$, $i=1,\dots,N$, $\theta_g$-connected with $C^1$-smooth basis vector fields $\{X_i\}_{i=1,\dots,N}$ satisfying condition $(+\deg)$. We prove a theorem of Gromov on the homogeneous nilpotent approximation for vector fields of class $C^1$. Nontrivial examples are constructed of quasimetrics induced by vector fields $\{X_i\}_{i=1,\dots,N}$.
@article{MT_2012_15_2_a3,
     author = {A. V. Greshnov},
     title = {Proof of {Gromov's} theorem on homogeneous nilpotent approximation for vector fields of class~$C^1$},
     journal = {Matemati\v{c}eskie trudy},
     pages = {72--88},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2012_15_2_a3/}
}
TY  - JOUR
AU  - A. V. Greshnov
TI  - Proof of Gromov's theorem on homogeneous nilpotent approximation for vector fields of class~$C^1$
JO  - Matematičeskie trudy
PY  - 2012
SP  - 72
EP  - 88
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2012_15_2_a3/
LA  - ru
ID  - MT_2012_15_2_a3
ER  - 
%0 Journal Article
%A A. V. Greshnov
%T Proof of Gromov's theorem on homogeneous nilpotent approximation for vector fields of class~$C^1$
%J Matematičeskie trudy
%D 2012
%P 72-88
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2012_15_2_a3/
%G ru
%F MT_2012_15_2_a3
A. V. Greshnov. Proof of Gromov's theorem on homogeneous nilpotent approximation for vector fields of class~$C^1$. Matematičeskie trudy, Tome 15 (2012) no. 2, pp. 72-88. http://geodesic.mathdoc.fr/item/MT_2012_15_2_a3/

[1] Vodopyanov S. K., Karmanova M. B., “Subrimanova geometriya pri minimalnoi gladkosti vektornykh polei”, Dokl. RAN, 422:5 (2008), 583–588 | MR

[2] Greshnov A. V., “Metriki ravnomerno regulyarnykh prostranstv Karno–Karateodori i ikh kasatelnykh konusov”, Sib. matem. zhurn., 47:2 (2006), 259–292 | MR | Zbl

[3] Greshnov A. V., “O primenenii metodov gruppovogo analiza differentsialnykh uravnenii dlya nekotorykh sistem $C^1$-gladkikh nekommutiruyuschikh vektornykh polei”, Sib. matem. zhurn., 50:1 (2009), 47–62 | MR | Zbl

[4] Greshnov A. V., “Ob obobschennom neravenstve treugolnika dlya kvazimetrik, indutsirovannykh nekommutiruyuschimi vektornymi polyami”, Matem. tr., 14:1 (2011), 70–98 | MR

[5] Karmanova M. B., “Skhodimost masshtabirovannykh vektornykh polei i lokalnaya approksimatsionnaya teorema na prostranstvakh Karno–Karateodori i prilozheniya”, Dokl. RAN, 440:6 (2011), 736–742 | MR | Zbl

[6] Miklyukov V. M., Vvedenie v negladkii analiz, Izd-vo VolGU, Volgograd, 2006

[7] Ovsyannikov L. V., Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978 | MR | Zbl

[8] Pontryagin L. S., Obyknovennye differentsialnye uravneniya, Fizmatgiz, M., 1961 | MR

[9] Pontryagin L. S., Nepreryvnye gruppy, Nauka, M., 1984 | MR

[10] Sternberg S., Lektsii po differentsialnoi geometrii, Mir, M., 1970 | MR | Zbl

[11] Khartman F., Obyknovennye differentsialnye uravneniya, Mir, M., 1970 | MR

[12] Aimar H., Forzani L., Toledano R., “Balls and quasi-metrics: a space of homogeneous type modeling the real analysis related to the Monge–Ampére equation”, J. Fourier Anal. Appl., 4:4–5 (1998), 377–381 | DOI | MR | Zbl

[13] Belläiche A., “The tangent space in sub-Riemannian geometry”, Sub-Riemannian Geometry, Birkhäuser, Basel, 1996, 1–78 | DOI | MR | Zbl

[14] Folland G. B., Stein E. M., Hardy Spaces on Homogeneous Groups, Math. Notes, 28, Princeton Univ. Press, Princeton, NJ; Tokyo Univ. Press, Tokyo, 1982 | MR | Zbl

[15] Gromov M., “Carnot–Carathéodory spaces seen from within”, Sub-Riemannian Geometry, Birkhäuser, Basel, 1996, 79–323 | DOI | MR | Zbl

[16] Métivier G., “Fonction spectrale et valeurs propres d'une classe d'opérateurs non elliptiques”, Comm. Partial Differential Equations, 1:5 (1976), 467–519 | DOI | MR | Zbl

[17] Montanari A., Morbidelli D., Nonsmooth Hörmander Vector Fields and Their Control Balls, arXiv: 0812.2369v1[math.MG] | MR

[18] Rampazzo F., Sussmann H., “Commutators of flow maps of nonsmooth vector fields”, J. Differential Equations, 232:1 (2007), 134–175 | DOI | MR | Zbl

[19] Rothchild L. P., Stein E. M., “Hypoelliptic differential operators and nilpotent groups”, Acta Math., 137:3–4 (1976), 247–320 | DOI | MR

[20] Stein E. M., “Some geometrical concepts arising in harmonic analysis”, Geom. Funct. Anal., 2000, Special Volume, Part I, 434–453 | MR | Zbl

[21] Triebel H., “A new approach to function spaces on quasi-metric spaces”, Rev. Mat. Complut., 18:1 (2005), 7–48 | MR | Zbl