On the discrete spectrum of partial integral operators
Matematičeskie trudy, Tome 15 (2012) no. 2, pp. 194-203

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove a theorem on the discrete spectrum of a partial integral selfadjoint operator with a continuous kernel.
@article{MT_2012_15_2_a11,
     author = {Yu. Kh. Eshkabilov},
     title = {On the discrete spectrum of partial integral operators},
     journal = {Matemati\v{c}eskie trudy},
     pages = {194--203},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2012_15_2_a11/}
}
TY  - JOUR
AU  - Yu. Kh. Eshkabilov
TI  - On the discrete spectrum of partial integral operators
JO  - Matematičeskie trudy
PY  - 2012
SP  - 194
EP  - 203
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2012_15_2_a11/
LA  - ru
ID  - MT_2012_15_2_a11
ER  - 
%0 Journal Article
%A Yu. Kh. Eshkabilov
%T On the discrete spectrum of partial integral operators
%J Matematičeskie trudy
%D 2012
%P 194-203
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2012_15_2_a11/
%G ru
%F MT_2012_15_2_a11
Yu. Kh. Eshkabilov. On the discrete spectrum of partial integral operators. Matematičeskie trudy, Tome 15 (2012) no. 2, pp. 194-203. http://geodesic.mathdoc.fr/item/MT_2012_15_2_a11/