Double exponential map on symmetric spaces
Matematičeskie trudy, Tome 15 (2012) no. 1, pp. 141-154.

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish an asymptotic formula for the double exponential map operator on affine symmetric spaces. This operator plays an important role in the geometric calculus of symbols of (pseudo)differential operators on manifolds with connection, whose foundations were laid by Sharafutdinov. To obtain this result, we essentially use the structural theory of symmetric spaces and techniques of the Lie group theory. One of the key moments is an application of the Campbell–Hausdorff series in Dynkin form.
@article{MT_2012_15_1_a8,
     author = {Yu. G. Nikonorov},
     title = {Double exponential map on symmetric spaces},
     journal = {Matemati\v{c}eskie trudy},
     pages = {141--154},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2012_15_1_a8/}
}
TY  - JOUR
AU  - Yu. G. Nikonorov
TI  - Double exponential map on symmetric spaces
JO  - Matematičeskie trudy
PY  - 2012
SP  - 141
EP  - 154
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2012_15_1_a8/
LA  - ru
ID  - MT_2012_15_1_a8
ER  - 
%0 Journal Article
%A Yu. G. Nikonorov
%T Double exponential map on symmetric spaces
%J Matematičeskie trudy
%D 2012
%P 141-154
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2012_15_1_a8/
%G ru
%F MT_2012_15_1_a8
Yu. G. Nikonorov. Double exponential map on symmetric spaces. Matematičeskie trudy, Tome 15 (2012) no. 1, pp. 141-154. http://geodesic.mathdoc.fr/item/MT_2012_15_1_a8/

[1] Gavrilov A. V., “Dvoinoe eksponentsialnoe otobrazhenie i kovariantnoe differentsirovanie”, Sib. matem. zhurn., 48:1 (2007), 68–74 | MR | Zbl

[2] Gavrilov A. V., “Formula Leibnitsa dlya kovariantnoi proizvodnoi i nekotorye ee prilozheniya”, Matem. tr., 13:1 (2010), 63–84 | MR | Zbl

[3] Dzhepko V. V., Nikonorov Yu. G., “Dvoinoe eksponentsialnoe otobrazhenie na prostranstvakh postoyannoi krivizny”, Matem. tr., 10:1 (2007), 141–153 | MR | Zbl

[4] Dynkin E. B., “O predstavlenii ryada $\log(e^xe^y)$ ot nekommutiruyuschikh $x$ i $y$ cherez kommutatory”, Matem. sb., 25(67):1 (1949), 155–162 | MR | Zbl

[5] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, v. I, II, Nauka, M., 1981

[6] Loos O., Simmetricheskie prostranstva, Nauka, M., 1985

[7] Postnikov M. M., Gruppy i algebry Li, Lektsii po geometrii. Semestr V, Nauka, M., 1982 | MR | Zbl

[8] Sabinin L. V., “O geometrii lup”, Matem. zametki, 12:5 (1972), 605–616 | MR

[9] Khelgason S., Differentsialnaya geometriya i simmetricheskie prostranstva, Mir, M., 1964

[10] Sharafutdinov V. A., “Geometricheskoe ischislenie simvolov psevdodifferentsialnykh operatorov: Chast I”, Matem. tr., 7:2 (2004), 159–206 ; “Часть II”, Матем. тр., 8:1 (2005), 176–201 | MR | Zbl | MR | Zbl

[11] Akivis M. A., Goldberg V. V., “Local algebras of differential quasigroups”, Bull. Amer. Math. Soc. (N.S.), 43:2 (2006), 207–226, (electronic) | DOI | MR | Zbl

[12] Kikkawa M., “On local loops in affine manifolds”, J. Sci. Hiroshima Univ. A-I, 28 (1964), 199–207 | MR | Zbl

[13] Kikkawa M., “Geometry of homogeneous Lie loops”, Hiroshima Math. J., 5:2 (1975), 141–179 | MR | Zbl

[14] Kikkawa M., “Kikkawa loops and homogeneous loops”, Comment. Math. Univ. Carolinae, 45:2 (2004), 279–285 | MR | Zbl

[15] Mielnik B., Plebanski J., “Combinatorial approach to Baker–Campbell–Hausdorff exponents”, Ann. Inst. H. Poincaré Sect. A (N.S.) Physique Theorique, 12:3 (1970), 215–254 | MR | Zbl

[16] Reinsch M. W., “A simple expression for the terms in the Baker–Campbell–Hausdorff series”, J. Math. Phys., 41:4 (2000), 2434–2442 | DOI | MR | Zbl

[17] Reutenauer C., Free Lie Algebras, Oxford Univ. Press, New York, 1993 | MR | Zbl

[18] Rouviere F., “Invariant analysis and contractions of symmetric spaces: Part I”, Compositio Math., 73:3 (1990), 241–270 ; “Part II”, Compositio Math., 80:2 (1991), 111–136 | MR | Zbl | MR | Zbl

[19] Sabinina L. L., “On Kikkawa spaces”, Russian Math. Surveys, 58:4 (2003), 796–797 | DOI | MR | Zbl

[20] Sharafutdinov V. A., Application of Geometric Symbol Calculus to Computing Heat Invariants, Preprint, May, 2008