Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MT_2012_15_1_a8, author = {Yu. G. Nikonorov}, title = {Double exponential map on symmetric spaces}, journal = {Matemati\v{c}eskie trudy}, pages = {141--154}, publisher = {mathdoc}, volume = {15}, number = {1}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MT_2012_15_1_a8/} }
Yu. G. Nikonorov. Double exponential map on symmetric spaces. Matematičeskie trudy, Tome 15 (2012) no. 1, pp. 141-154. http://geodesic.mathdoc.fr/item/MT_2012_15_1_a8/
[1] Gavrilov A. V., “Dvoinoe eksponentsialnoe otobrazhenie i kovariantnoe differentsirovanie”, Sib. matem. zhurn., 48:1 (2007), 68–74 | MR | Zbl
[2] Gavrilov A. V., “Formula Leibnitsa dlya kovariantnoi proizvodnoi i nekotorye ee prilozheniya”, Matem. tr., 13:1 (2010), 63–84 | MR | Zbl
[3] Dzhepko V. V., Nikonorov Yu. G., “Dvoinoe eksponentsialnoe otobrazhenie na prostranstvakh postoyannoi krivizny”, Matem. tr., 10:1 (2007), 141–153 | MR | Zbl
[4] Dynkin E. B., “O predstavlenii ryada $\log(e^xe^y)$ ot nekommutiruyuschikh $x$ i $y$ cherez kommutatory”, Matem. sb., 25(67):1 (1949), 155–162 | MR | Zbl
[5] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, v. I, II, Nauka, M., 1981
[6] Loos O., Simmetricheskie prostranstva, Nauka, M., 1985
[7] Postnikov M. M., Gruppy i algebry Li, Lektsii po geometrii. Semestr V, Nauka, M., 1982 | MR | Zbl
[8] Sabinin L. V., “O geometrii lup”, Matem. zametki, 12:5 (1972), 605–616 | MR
[9] Khelgason S., Differentsialnaya geometriya i simmetricheskie prostranstva, Mir, M., 1964
[10] Sharafutdinov V. A., “Geometricheskoe ischislenie simvolov psevdodifferentsialnykh operatorov: Chast I”, Matem. tr., 7:2 (2004), 159–206 ; “Часть II”, Матем. тр., 8:1 (2005), 176–201 | MR | Zbl | MR | Zbl
[11] Akivis M. A., Goldberg V. V., “Local algebras of differential quasigroups”, Bull. Amer. Math. Soc. (N.S.), 43:2 (2006), 207–226, (electronic) | DOI | MR | Zbl
[12] Kikkawa M., “On local loops in affine manifolds”, J. Sci. Hiroshima Univ. A-I, 28 (1964), 199–207 | MR | Zbl
[13] Kikkawa M., “Geometry of homogeneous Lie loops”, Hiroshima Math. J., 5:2 (1975), 141–179 | MR | Zbl
[14] Kikkawa M., “Kikkawa loops and homogeneous loops”, Comment. Math. Univ. Carolinae, 45:2 (2004), 279–285 | MR | Zbl
[15] Mielnik B., Plebanski J., “Combinatorial approach to Baker–Campbell–Hausdorff exponents”, Ann. Inst. H. Poincaré Sect. A (N.S.) Physique Theorique, 12:3 (1970), 215–254 | MR | Zbl
[16] Reinsch M. W., “A simple expression for the terms in the Baker–Campbell–Hausdorff series”, J. Math. Phys., 41:4 (2000), 2434–2442 | DOI | MR | Zbl
[17] Reutenauer C., Free Lie Algebras, Oxford Univ. Press, New York, 1993 | MR | Zbl
[18] Rouviere F., “Invariant analysis and contractions of symmetric spaces: Part I”, Compositio Math., 73:3 (1990), 241–270 ; “Part II”, Compositio Math., 80:2 (1991), 111–136 | MR | Zbl | MR | Zbl
[19] Sabinina L. L., “On Kikkawa spaces”, Russian Math. Surveys, 58:4 (2003), 796–797 | DOI | MR | Zbl
[20] Sharafutdinov V. A., Application of Geometric Symbol Calculus to Computing Heat Invariants, Preprint, May, 2008