Lower bound states of one-particle Hamiltonians on an integer lattice
Matematičeskie trudy, Tome 15 (2012) no. 1, pp. 129-140

Voir la notice de l'article provenant de la source Math-Net.Ru

Under consideration is a Hamiltonian $H$ describing the motion of a quantum particle on a $d$-mentional lattice in an exterior field. It is proven that if $H$ has an eigenvalue at the lower bound of its spectrum then this eigenvalue is nondegenerate and the corresponding eigenfunction is strictly positive (thereby a lattice analog of the Perron–Frobenius theorem is proven).
@article{MT_2012_15_1_a7,
     author = {Z. E. Muminov and U. N. Kulzhanov},
     title = {Lower bound states of one-particle {Hamiltonians} on an integer lattice},
     journal = {Matemati\v{c}eskie trudy},
     pages = {129--140},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2012_15_1_a7/}
}
TY  - JOUR
AU  - Z. E. Muminov
AU  - U. N. Kulzhanov
TI  - Lower bound states of one-particle Hamiltonians on an integer lattice
JO  - Matematičeskie trudy
PY  - 2012
SP  - 129
EP  - 140
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2012_15_1_a7/
LA  - ru
ID  - MT_2012_15_1_a7
ER  - 
%0 Journal Article
%A Z. E. Muminov
%A U. N. Kulzhanov
%T Lower bound states of one-particle Hamiltonians on an integer lattice
%J Matematičeskie trudy
%D 2012
%P 129-140
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2012_15_1_a7/
%G ru
%F MT_2012_15_1_a7
Z. E. Muminov; U. N. Kulzhanov. Lower bound states of one-particle Hamiltonians on an integer lattice. Matematičeskie trudy, Tome 15 (2012) no. 1, pp. 129-140. http://geodesic.mathdoc.fr/item/MT_2012_15_1_a7/