Lower bound states of one-particle Hamiltonians on an integer lattice
Matematičeskie trudy, Tome 15 (2012) no. 1, pp. 129-140.

Voir la notice de l'article provenant de la source Math-Net.Ru

Under consideration is a Hamiltonian $H$ describing the motion of a quantum particle on a $d$-mentional lattice in an exterior field. It is proven that if $H$ has an eigenvalue at the lower bound of its spectrum then this eigenvalue is nondegenerate and the corresponding eigenfunction is strictly positive (thereby a lattice analog of the Perron–Frobenius theorem is proven).
@article{MT_2012_15_1_a7,
     author = {Z. E. Muminov and U. N. Kulzhanov},
     title = {Lower bound states of one-particle {Hamiltonians} on an integer lattice},
     journal = {Matemati\v{c}eskie trudy},
     pages = {129--140},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2012_15_1_a7/}
}
TY  - JOUR
AU  - Z. E. Muminov
AU  - U. N. Kulzhanov
TI  - Lower bound states of one-particle Hamiltonians on an integer lattice
JO  - Matematičeskie trudy
PY  - 2012
SP  - 129
EP  - 140
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2012_15_1_a7/
LA  - ru
ID  - MT_2012_15_1_a7
ER  - 
%0 Journal Article
%A Z. E. Muminov
%A U. N. Kulzhanov
%T Lower bound states of one-particle Hamiltonians on an integer lattice
%J Matematičeskie trudy
%D 2012
%P 129-140
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2012_15_1_a7/
%G ru
%F MT_2012_15_1_a7
Z. E. Muminov; U. N. Kulzhanov. Lower bound states of one-particle Hamiltonians on an integer lattice. Matematičeskie trudy, Tome 15 (2012) no. 1, pp. 129-140. http://geodesic.mathdoc.fr/item/MT_2012_15_1_a7/

[1] Bellman R., Vvedenie v teoriyu matrits, Nauka, M., 1976 | MR

[2] Levitan B. M., Teoriya operatorov obobschennogo sdviga, Nauka, M., 1973 | MR | Zbl

[3] Albeverio S., Lakaev S. N., Makarov K. A., Muminov Z. I., “The threshold effects for the two-particle Hamiltonians on lattices”, Comm. Math. Phys., 262:1 (2006), 91–115 | DOI | MR | Zbl

[4] Albeverio S., Lakaev S. N., Muminov Z. I., “Schrödinger operators on lattices. The Efimov effect and discrete spectrum asymptotics”, Ann. Inst. H. Poincaré, 5:4 (2004), 743–772 | MR | Zbl

[5] Albeverio S., Lakaev S. N., Muminov Z. I., “On the structure of the essential spectrum for the three-particle Schrödinger operators on lattices”, Math. Nachr., 280:7 (2007), 699–716 | DOI | MR | Zbl

[6] Frobenius F. G., “Über Matrizen mit positiven Elementen”, Sitzungsber. Preuss. Akad. Wiss. (Berlin), 91 (1908), 471–476 (German) | Zbl

[7] Glimm J., Jaffe A., “The $\lambda(\varphi^4)_2$ quantum field theory without cutoffs. II: The field operators and the approximate vacuum”, Ann. Math. (2), 91 (1970), 362–401 | DOI | MR | Zbl

[8] Gohberg I., Goldberg S., Kaashoek M. A., Basic Classes of Linear Operators, Birkhäuser Verlag, Basel, 2003 | MR

[9] Graf G. M., Schenker D., “2-magnon scattering in the Heisenberg model”, Ann. Inst. H. Poincaré Phys. Théor., 67:1 (1997), 91–107 | MR | Zbl

[10] Lakaev S. N., “Discrete spectrum and resonances of the one-dimensional Schrödinger operator for small coupling constants”, Teoret. Mat. Fiz., 44:3 (1980), 381–386 | MR | Zbl

[11] Lakaev S. N., “The Efimov effect in a system of three identical quantum particles”, Funct. Anal. Appl., 27:3 (1993), 166–175 | DOI | MR | Zbl

[12] Mattis D. C., “The few-body problem on a lattice”, Rev. Modern Phys., 58:2 (1986), 361–379 | DOI | MR

[13] Mogilner A., “Hamiltonians in solid-state physics as multiparticle discrete Schrödinger operators: problems and results”, Many-Particle Hamiltonians: Spectra and Scattering, Adv. Soviet Math., 5, Amer. Math. Soc., Providence, RI, 1991, 139–194 | MR

[14] Perron O., “Zur Theorie der Matrizen”, Math. Ann., 64 (1907), 248–263 (German) | DOI | MR | Zbl

[15] Reed M., Simon B., Methods of Modern Mathematical Physics, v. 4, Academic Press, New York–London, 1979 | MR | Zbl

[16] Simon B., Høegh-Krohn R., “Hypercontractive semigroups and two-dimensional self-coupled Bose fields”, J. Funct. Anal., 9 (1972), 121–180 | DOI | MR | Zbl