Lower bound states of one-particle Hamiltonians on an integer lattice
Matematičeskie trudy, Tome 15 (2012) no. 1, pp. 129-140
Voir la notice de l'article provenant de la source Math-Net.Ru
Under consideration is a Hamiltonian $H$ describing the motion of a quantum particle on a $d$-mentional lattice in an exterior field. It is proven that if $H$ has an eigenvalue at the lower bound of its spectrum then this eigenvalue is nondegenerate and the corresponding eigenfunction is strictly positive (thereby a lattice analog of the Perron–Frobenius theorem is proven).
@article{MT_2012_15_1_a7,
author = {Z. E. Muminov and U. N. Kulzhanov},
title = {Lower bound states of one-particle {Hamiltonians} on an integer lattice},
journal = {Matemati\v{c}eskie trudy},
pages = {129--140},
publisher = {mathdoc},
volume = {15},
number = {1},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MT_2012_15_1_a7/}
}
Z. E. Muminov; U. N. Kulzhanov. Lower bound states of one-particle Hamiltonians on an integer lattice. Matematičeskie trudy, Tome 15 (2012) no. 1, pp. 129-140. http://geodesic.mathdoc.fr/item/MT_2012_15_1_a7/