The geodesic flow of a~sub-Riemannian metric on a~solvable lie group
Matematičeskie trudy, Tome 15 (2012) no. 1, pp. 120-128
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the sub-Riemannian problem on the three-dimensional solvable Lie group $\mathrm{SOLV}^+$. The problem is based on constructing a Hamiltonian structure for a given metric by the Pontryagin Maximum Principle.
@article{MT_2012_15_1_a6,
author = {A. D. Mazhitova},
title = {The geodesic flow of {a~sub-Riemannian} metric on a~solvable lie group},
journal = {Matemati\v{c}eskie trudy},
pages = {120--128},
publisher = {mathdoc},
volume = {15},
number = {1},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MT_2012_15_1_a6/}
}
A. D. Mazhitova. The geodesic flow of a~sub-Riemannian metric on a~solvable lie group. Matematičeskie trudy, Tome 15 (2012) no. 1, pp. 120-128. http://geodesic.mathdoc.fr/item/MT_2012_15_1_a6/