The geodesic flow of a~sub-Riemannian metric on a~solvable lie group
Matematičeskie trudy, Tome 15 (2012) no. 1, pp. 120-128

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the sub-Riemannian problem on the three-dimensional solvable Lie group $\mathrm{SOLV}^+$. The problem is based on constructing a Hamiltonian structure for a given metric by the Pontryagin Maximum Principle.
@article{MT_2012_15_1_a6,
     author = {A. D. Mazhitova},
     title = {The geodesic flow of {a~sub-Riemannian} metric  on a~solvable lie group},
     journal = {Matemati\v{c}eskie trudy},
     pages = {120--128},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2012_15_1_a6/}
}
TY  - JOUR
AU  - A. D. Mazhitova
TI  - The geodesic flow of a~sub-Riemannian metric  on a~solvable lie group
JO  - Matematičeskie trudy
PY  - 2012
SP  - 120
EP  - 128
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2012_15_1_a6/
LA  - ru
ID  - MT_2012_15_1_a6
ER  - 
%0 Journal Article
%A A. D. Mazhitova
%T The geodesic flow of a~sub-Riemannian metric  on a~solvable lie group
%J Matematičeskie trudy
%D 2012
%P 120-128
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2012_15_1_a6/
%G ru
%F MT_2012_15_1_a6
A. D. Mazhitova. The geodesic flow of a~sub-Riemannian metric  on a~solvable lie group. Matematičeskie trudy, Tome 15 (2012) no. 1, pp. 120-128. http://geodesic.mathdoc.fr/item/MT_2012_15_1_a6/