The geodesic flow of a~sub-Riemannian metric on a~solvable lie group
Matematičeskie trudy, Tome 15 (2012) no. 1, pp. 120-128.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the sub-Riemannian problem on the three-dimensional solvable Lie group $\mathrm{SOLV}^+$. The problem is based on constructing a Hamiltonian structure for a given metric by the Pontryagin Maximum Principle.
@article{MT_2012_15_1_a6,
     author = {A. D. Mazhitova},
     title = {The geodesic flow of {a~sub-Riemannian} metric  on a~solvable lie group},
     journal = {Matemati\v{c}eskie trudy},
     pages = {120--128},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2012_15_1_a6/}
}
TY  - JOUR
AU  - A. D. Mazhitova
TI  - The geodesic flow of a~sub-Riemannian metric  on a~solvable lie group
JO  - Matematičeskie trudy
PY  - 2012
SP  - 120
EP  - 128
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2012_15_1_a6/
LA  - ru
ID  - MT_2012_15_1_a6
ER  - 
%0 Journal Article
%A A. D. Mazhitova
%T The geodesic flow of a~sub-Riemannian metric  on a~solvable lie group
%J Matematičeskie trudy
%D 2012
%P 120-128
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2012_15_1_a6/
%G ru
%F MT_2012_15_1_a6
A. D. Mazhitova. The geodesic flow of a~sub-Riemannian metric  on a~solvable lie group. Matematičeskie trudy, Tome 15 (2012) no. 1, pp. 120-128. http://geodesic.mathdoc.fr/item/MT_2012_15_1_a6/

[1] Agrachev A. A., Sachkov Yu. L., Geometricheskaya teoriya upravleniya, Fizmatlit, M., 2005

[2] Aksenov E. P., Spetsialnye funktsii v nebesnoi mekhanike, Nauka, M., 1986 | MR | Zbl

[3] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, summ, ryadov i proizvedenii, Fizmatgiz, M., 1963 | MR

[4] Mazhitova A. D., “Subrimanova zadacha na trekhmernoi razreshimoi gruppe Li”, Vestnik KazNU. Ser. mat., mekh., informat., 2010, no. 2(65), 11–18

[5] Sachkov Yu. L., Upravlyaemost i simmetrii invariantnykh sistem na gruppakh Li i odnorodnykh prostranstvakh, Fizmatlit, M., 2007 | Zbl

[6] Agrachev A., Barilari D., Sub-Riemannian Structures on 3D Lie Groups, 2011, arXiv: 1007.4970

[7] Boscain U., Rossi F., Invariant Carnot–Carathéodory Metrics on $S^3$, $SO(3)$, $SL(2)$, and Lens Spaces, Preprint SISSA, 2007, arXiv: 0709.3997 | MR

[8] Chang D.-Ch., Markina I., Vasil'ev A., Sub-Riemannian Geometry on the Sphere $S^3$, 2008, arXiv: 0804.1695

[9] Mazhitova A. D., “Sub-Riemannian geodesics on the three-dimensional solvable non-nilpotent Lie group $\mathrm{SOLV}^-$”, J. Dynam. Control Systems, 2012 (to appear)

[10] Moiseev I., Sachkov Yu., “Maxwell strata in sub-Riemannian problem on the group of motions of a plane”, ESAIM Control Optim. Calc. Var., 16:2 (2010), 380–399 | DOI | MR | Zbl

[11] Sachkov Yu., “Conjugate and cut time in the sub-Riemannian problem on the group of motions of a plane”, ESAIM Control Optim. Calc. Var., 16:4 (2010), 1018–1039 | DOI | MR | Zbl

[12] Taimanov I. A., “Integrable geodesic flows of nonholonomic metrics”, J. Dynam. Control Systems, 3:1 (1997), 129–147 | DOI | MR | Zbl