Generalized o-minimality for partial orders
Matematičeskie trudy, Tome 15 (2012) no. 1, pp. 86-108

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider partially ordered models. We introduce the notions of a weakly (quasi-)$p.o.$-minimal model and a weakly (quasi-)$p.o.$-minimal theory. We prove that weakly quasi-$p.o.$-minimal theories of finite width lack the independence property, weakly $p.o.$-minimal directed groups are Abelian and divisible, weakly quasi-$p.o.$-minimal directed groups with unique roots are Abelian, and the direct product of a finite family of weakly $p.o.$-minimal models is a weakly $p.o.$-minimal model. We obtain results on existence of small extensions of models of weakly quasi-$p.o.$-minimal atomic theories. In particular, for such a theory of finite length, we find an upper estimate of the Hanf number for omitting a family of pure types. We also find an upper bound for the cardinalities of weakly quasi-$p.o.$-minimal absolutely homogeneous models of moderate width.
@article{MT_2012_15_1_a4,
     author = {K. Zh. Kudaibergenov},
     title = {Generalized o-minimality for partial orders},
     journal = {Matemati\v{c}eskie trudy},
     pages = {86--108},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2012_15_1_a4/}
}
TY  - JOUR
AU  - K. Zh. Kudaibergenov
TI  - Generalized o-minimality for partial orders
JO  - Matematičeskie trudy
PY  - 2012
SP  - 86
EP  - 108
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2012_15_1_a4/
LA  - ru
ID  - MT_2012_15_1_a4
ER  - 
%0 Journal Article
%A K. Zh. Kudaibergenov
%T Generalized o-minimality for partial orders
%J Matematičeskie trudy
%D 2012
%P 86-108
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2012_15_1_a4/
%G ru
%F MT_2012_15_1_a4
K. Zh. Kudaibergenov. Generalized o-minimality for partial orders. Matematičeskie trudy, Tome 15 (2012) no. 1, pp. 86-108. http://geodesic.mathdoc.fr/item/MT_2012_15_1_a4/