Semigroups of polygons whose vertices define a~centered partition of~$\mathbb R^n$
Matematičeskie trudy, Tome 15 (2012) no. 1, pp. 55-73.

Voir la notice de l'article provenant de la source Math-Net.Ru

A partition $\mathfrak F$ of a Euclidean space into finite subsets has subgroup property $\mathsf{SP}$ if the family of the convex hulls of the leaves of $\mathfrak F$ constitutes a subgroup with respect to the Minkowski addition. If $\mathfrak F$ consists of orbits of a finite linear groups then $\mathsf{SP}$ is equivalent to the fact that the group is a Coxeter group. In this article, this assertion is proved only under the assumption of continuity and centrality of $\mathfrak F$ (this means that every leaf is inscribed in some sphere centered at zero). An example is given of a noncentered partition satisfying $\mathsf{SP}$ (such partitions cannot be Coxeter partitions).
@article{MT_2012_15_1_a2,
     author = {V. M. Gichev and I. A. Zubareva and E. A. Mescheryakov},
     title = {Semigroups of polygons whose vertices define a~centered partition of~$\mathbb R^n$},
     journal = {Matemati\v{c}eskie trudy},
     pages = {55--73},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2012_15_1_a2/}
}
TY  - JOUR
AU  - V. M. Gichev
AU  - I. A. Zubareva
AU  - E. A. Mescheryakov
TI  - Semigroups of polygons whose vertices define a~centered partition of~$\mathbb R^n$
JO  - Matematičeskie trudy
PY  - 2012
SP  - 55
EP  - 73
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2012_15_1_a2/
LA  - ru
ID  - MT_2012_15_1_a2
ER  - 
%0 Journal Article
%A V. M. Gichev
%A I. A. Zubareva
%A E. A. Mescheryakov
%T Semigroups of polygons whose vertices define a~centered partition of~$\mathbb R^n$
%J Matematičeskie trudy
%D 2012
%P 55-73
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2012_15_1_a2/
%G ru
%F MT_2012_15_1_a2
V. M. Gichev; I. A. Zubareva; E. A. Mescheryakov. Semigroups of polygons whose vertices define a~centered partition of~$\mathbb R^n$. Matematičeskie trudy, Tome 15 (2012) no. 1, pp. 55-73. http://geodesic.mathdoc.fr/item/MT_2012_15_1_a2/

[1] Berestovskii V. N., “Odnorodnye prostranstva s vnutrennei metrikoi. I”, Sib. matem. zhurn., 29:6 (1988), 17–29 | MR

[2] Berestovskii V. N., Gichev V. M., “Metrizovannye levoinvariantnye poryadki na topologicheskikh gruppakh”, Algebra i analiz, 11:4 (1999), 1–34 | MR | Zbl

[3] Berestovskiǐ V., Plaut C., Stallman C., “Geometric groups. I”, Trans. Amer. Math. Soc., 351:4 (1999), 1403–1422 | DOI | MR | Zbl

[4] Dadok J., “Polar coordinates induced by actions of compact Lie groups”, Trans. Amer. Math. Soc., 288:1 (1985), 125–137 | DOI | MR | Zbl

[5] Gichev V. M., “Polar representations of compact groups and convex hulls of their orbits”, Differential Geom. Appl., 28:5 (2010), 608–614 | DOI | MR | Zbl

[6] Ozeki H., Takeuchi M., “On some types of isoparametric hypersurfaces in spheres. I”, Tôhoku Math. J. (2), 27:4 (1975), 515–559 | DOI | MR | Zbl

[7] Palais R., Terng C.-L., “A general theory of canonical forms”, Trans. Amer. Math. Soc., 300:2 (1987), 771–789 | DOI | MR | Zbl

[8] Radström H., “Convexity and norm in topological groups”, Ark. Mat., 2:7 (1952), 99–137 | DOI | MR

[9] Radström H., “One-parameter semigroups of subsets of a real linear space”, Ark. Mat., 4:9 (1959), 87–97 | MR

[10] Thorbergsson G., “Isoparametric foliations and their buildings”, Ann. of Math. (2), 133:2 (1991), 429–446 | DOI | MR | Zbl