Semigroups of polygons whose vertices define a~centered partition of~$\mathbb R^n$
Matematičeskie trudy, Tome 15 (2012) no. 1, pp. 55-73

Voir la notice de l'article provenant de la source Math-Net.Ru

A partition $\mathfrak F$ of a Euclidean space into finite subsets has subgroup property $\mathsf{SP}$ if the family of the convex hulls of the leaves of $\mathfrak F$ constitutes a subgroup with respect to the Minkowski addition. If $\mathfrak F$ consists of orbits of a finite linear groups then $\mathsf{SP}$ is equivalent to the fact that the group is a Coxeter group. In this article, this assertion is proved only under the assumption of continuity and centrality of $\mathfrak F$ (this means that every leaf is inscribed in some sphere centered at zero). An example is given of a noncentered partition satisfying $\mathsf{SP}$ (such partitions cannot be Coxeter partitions).
@article{MT_2012_15_1_a2,
     author = {V. M. Gichev and I. A. Zubareva and E. A. Mescheryakov},
     title = {Semigroups of polygons whose vertices define a~centered partition of~$\mathbb R^n$},
     journal = {Matemati\v{c}eskie trudy},
     pages = {55--73},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2012_15_1_a2/}
}
TY  - JOUR
AU  - V. M. Gichev
AU  - I. A. Zubareva
AU  - E. A. Mescheryakov
TI  - Semigroups of polygons whose vertices define a~centered partition of~$\mathbb R^n$
JO  - Matematičeskie trudy
PY  - 2012
SP  - 55
EP  - 73
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2012_15_1_a2/
LA  - ru
ID  - MT_2012_15_1_a2
ER  - 
%0 Journal Article
%A V. M. Gichev
%A I. A. Zubareva
%A E. A. Mescheryakov
%T Semigroups of polygons whose vertices define a~centered partition of~$\mathbb R^n$
%J Matematičeskie trudy
%D 2012
%P 55-73
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2012_15_1_a2/
%G ru
%F MT_2012_15_1_a2
V. M. Gichev; I. A. Zubareva; E. A. Mescheryakov. Semigroups of polygons whose vertices define a~centered partition of~$\mathbb R^n$. Matematičeskie trudy, Tome 15 (2012) no. 1, pp. 55-73. http://geodesic.mathdoc.fr/item/MT_2012_15_1_a2/