Equicontinuity of homeomorphisms with unbounded characteristic
Matematičeskie trudy, Tome 15 (2012) no. 1, pp. 178-204.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article is devoted to the study of the boundary properties of homeomorphisms $f\colon D\to D'$, $D,D'\subset\mathbb R^n$, satisfying some geometric conditions responsible for the control of the measure of distortion of families of curves in $D$. Under additional requirements on the boundaries $\partial D$ and $\partial D'$ of the domains, we prove that the family of all such homeomorphisms is equicontinuous in $\overline D$.
@article{MT_2012_15_1_a10,
     author = {E. A. Sevostyanov},
     title = {Equicontinuity of homeomorphisms with unbounded characteristic},
     journal = {Matemati\v{c}eskie trudy},
     pages = {178--204},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2012_15_1_a10/}
}
TY  - JOUR
AU  - E. A. Sevostyanov
TI  - Equicontinuity of homeomorphisms with unbounded characteristic
JO  - Matematičeskie trudy
PY  - 2012
SP  - 178
EP  - 204
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2012_15_1_a10/
LA  - ru
ID  - MT_2012_15_1_a10
ER  - 
%0 Journal Article
%A E. A. Sevostyanov
%T Equicontinuity of homeomorphisms with unbounded characteristic
%J Matematičeskie trudy
%D 2012
%P 178-204
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2012_15_1_a10/
%G ru
%F MT_2012_15_1_a10
E. A. Sevostyanov. Equicontinuity of homeomorphisms with unbounded characteristic. Matematičeskie trudy, Tome 15 (2012) no. 1, pp. 178-204. http://geodesic.mathdoc.fr/item/MT_2012_15_1_a10/

[1] Gurvits A., Kurant R., Teoriya funktsii, Nauka, Moskva, 1968 | MR

[2] Kuratovskii K., Topologiya, v. 2, Mir, M., 1969 | MR

[3] Miklyukov V. M., Konformnoe otobrazhenie neregulyarnoi poverkhnosti i ego primeneniya, Izd-vo VolGU, Volgograd, 2005

[4] Reshetnyak Yu. G., Prostranstvennye otobrazheniya s ogranichennym iskazheniem, Nauka, Novosibirsk, 1982 | MR | Zbl

[5] Ryazanov V. I., Salimov R. R., “Slabo ploskie prostranstva i granitsy v teorii otobrazhenii”, Ukr. matem. vestnik, 4:2 (2007), 199–234 | MR

[6] Saks S., Teoriya integrala, Izd-vo inostr. lit., M., 1949

[7] Sevostyanov E. A., “Ravnostepennaya nepreryvnost odnogo semeistva otobrazhenii v zamykanii oblasti”, Trudy IPMM NAN Ukrainy, 19, 2009, 225–233

[8] Smolovaya E. S., “Granichnoe povedenie koltsevykh $Q$-gomeomorfizmov v metricheskikh prostranstvakh”, Ukr. matem. zhurn., 62:5 (2010), 682–689 | Zbl

[9] Strugov Yu. F., “Kompaktnost klassov otobrazhenii, kvazikonformnykh v srednem”, Dokl. AN SSSR, 243:4 (1978), 859–861 | MR | Zbl

[10] Suvorov G. D., Ob iskusstve matematicheskogo issledovaniya, Donetskaya firma naukoemkikh tekhnologii NAN Ukrainy (Firma TEAN), Donetsk, 1999

[11] Sychev A. V., “Prostranstvennye kvazikonformnye otobrazheniya, nepreryvnye po Gëlderu v granichnykh tochkakh”, Sib. matem. zhurn., 11:1 (1970), 183–192 | MR | Zbl

[12] Federer G., Geometricheskaya teoriya mery, Nauka, Moskva, 1987 | MR | Zbl

[13] Bishop C. J., Gutlyanskii V. Ya., Martio O., Vuorinen M., “On conformal dilatation in space”, Internat. J. Math. Sci., 22 (2003), 1397–1420 | DOI | MR | Zbl

[14] Gehring F. W., “Rings and quasiconformal mappings in space”, Trans. Amer. Math. Soc., 103 (1962), 353–393 | DOI | MR | Zbl

[15] Gehring F. W., “Quasiconformal mappings”, Complex Analysis and Its Applications, Lectures (Internat. Sem., Trieste, 1975), v. II, Internat. Atomic Energy Agency, Vienna, 1976, 213–268 | MR | Zbl

[16] Gehring F. W., Martio O., “Quasiextremal distance domains and extension of quasiconformal mappings”, J. Analyse Math., 45 (1985), 181–206 | DOI | MR | Zbl

[17] Heikkala V., Inequalities for Conformal Capacity, Modulus, and Conformal Invariants, Ann. Acad. Sci. Fenn. Math. Diss., 132, 2002 | MR | Zbl

[18] Herron D., Koskela P., “Quasiextremal distance domains and conformal mappings onto circle domains”, Complex Variables Theory Appl., 15:3 (1990), 167–179 | DOI | MR | Zbl

[19] John F., Nirenberg L., “On functions of bounded mean oscillation”, Comm. Pure Appl. Math., 14 (1961), 415–426 | DOI | MR | Zbl

[20] Lehto O., Virtanen K., Quasiconformal Mappings in the Plane, 2nd ed., Springer-Verlag, New York, etc., 1973 | MR | Zbl

[21] Martio O., Ryazanov V., Srebro U., Yakubov E., Moduli in Modern Mapping Theory, Springer Monographs in Mathematics, Springer, New York, 2009 | MR | Zbl

[22] Näkki R., “Boundary behavior of quasiconformal mappings in $n$-space”, Ann. Acad. Sci. Fenn. Ser. A I Math., 484 (1970), 1–50 | MR

[23] Näkki R., Palka B., “Uniform equicontinuity of quasiconformal mappings”, Proc. Amer. Math. Soc., 37:2 (1973), 427–433 | DOI | MR

[24] Rickman S., Quasiregular Mappings, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 26, Springer-Verlag, Berlin, 1993 | MR | Zbl

[25] Troyanov M., Vodop'yanov S., “Liouville type theorems for mappings with bounded (co)-distortion”, Ann. Inst. Fourier (Grenoble), 52:6 (2002), 1753–1784 | DOI | MR | Zbl

[26] Ukhlov A. D., Vodop'yanov S. K., “Sobolev spaces and mappings with bounded $(P;Q)$-distortion on Carnot groups”, Bull. Sci. Math., 52:4 (2009), 349–370

[27] Väisälä J., Lectures on $n$\@Dimensional Quasiconformal Mappings, Lecture Notes in Math., 229, Springer-Verlag, Berlin, etc., 1971 | MR

[28] Vuorinen M., Conformal Geometry and Quasiregular Mappings, Lecture Notes in Math., 1319, Springer-Verlag, Berlin, etc., 1988 | MR | Zbl