Hitting times with taboo for a~random walk
Matematičeskie trudy, Tome 15 (2012) no. 1, pp. 3-26.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a symmetric homogeneous and irreducible random walk on the $d$-dimensional integer lattice, which have a finite variance of jumps, we study passage times (taking values in $[0,\infty]$) determined by a starting point $x$, a hitting state $y$, and a taboo state $z$. We find the probability that these passage times are finite, and study the distribution tail. In particular, it turns out that, for the above-mentioned random walks on $\mathbb Z^d$ except for a simple random walk on $\mathbb Z$, the order of the distribution tail decrease is specified by dimension $d$ only. In contrast, for a simple random walk on $\mathbb Z$, the asymptotic properties of hitting times with taboo essentially depend on mutual location of the points $x,y$, and $z$. These problems originated in recent study of a branching random walk on $\mathbb Z^d$ with a single source of branching.
@article{MT_2012_15_1_a0,
     author = {E. Vl. Bulinskaya},
     title = {Hitting times with taboo  for a~random walk},
     journal = {Matemati\v{c}eskie trudy},
     pages = {3--26},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2012_15_1_a0/}
}
TY  - JOUR
AU  - E. Vl. Bulinskaya
TI  - Hitting times with taboo  for a~random walk
JO  - Matematičeskie trudy
PY  - 2012
SP  - 3
EP  - 26
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2012_15_1_a0/
LA  - ru
ID  - MT_2012_15_1_a0
ER  - 
%0 Journal Article
%A E. Vl. Bulinskaya
%T Hitting times with taboo  for a~random walk
%J Matematičeskie trudy
%D 2012
%P 3-26
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2012_15_1_a0/
%G ru
%F MT_2012_15_1_a0
E. Vl. Bulinskaya. Hitting times with taboo  for a~random walk. Matematičeskie trudy, Tome 15 (2012) no. 1, pp. 3-26. http://geodesic.mathdoc.fr/item/MT_2012_15_1_a0/

[1] Afanasev V. I., Sluchainye bluzhdaniya i vetvyaschiesya protsessy, Lektsionnye kursy NOTs, 6, MIAN, M., 2007

[2] Borovkov A. A., Teoriya veroyatnostei, Uchebnoe posobie, 5-e izd., Knizhnyi dom “Librokom”, M., 2009

[3] Bulinskaya E. Vl., “Kataliticheskoe vetvyascheesya sluchainoe bluzhdanie po dvumernoi reshetke”, TVP, 55:1 (2010), 142–148 | MR

[4] Bulinskii A. V., Shiryaev A. N., Teoriya sluchainykh protsessov, Fizmatlit, M., 2005

[5] Vatutin V. A., Vetvyaschiesya protsessy Bellmana–Kharrisa, Lekts. kursy NOTs, 12, MIAN, M., 2009

[6] Vatutin V. A., Topchii V. A., “Kataliticheskoe vetvyascheesya sluchainoe bluzhdanie po $\mathbb Z^d$ s odnim istochnikom vetvleniya”, Matem. tr., 14:2 (2011), 28–72

[7] Gikhman I. I., Skorokhod A. V., Teoriya sluchainykh protsessov, v. 2, Nauka, M., 1973 | MR | Zbl

[8] Zubkov A. M., “Neravenstva dlya veroyatnostei perekhodov s zaprescheniyami i ikh primeneniya”, Matem. sb., 109(151):4(8) (1979), 491–532 | MR | Zbl

[9] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, v. 2, Mir, M., 1984 | Zbl

[10] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, v. 2, Fizmatlit, M., 2001

[11] Chzhun K. L., Odnorodnye tsepi Markova, Mir, M., 1964

[12] Shiryaev A. N., Veroyatnost, v. 1, MTsNMO, M., 2004

[13] Yarovaya E. B., Vetvyaschiesya sluchainye bluzhdaniya v neodnorodnoi srede, Izd-vo TsPI pri mekh.-mat. fakultete MGU, M., 2007

[14] Athreya K. B., Ney P. E., Branching Processes, Die Grundlehren der mathematischen Wissenschaften, 196, Springer, New York, 1972 | MR | Zbl

[15] Brémaud P., Markov Chains: Gibbs Fields, Monte-Carlo Simulation, and Queues, Springer-Verlag, New York, 1999 | MR | Zbl

[16] Bulinskaya E. Vl., “Catalytic branching random walk on three-dimensional lattice”, Theory Stoch. Process, 16:2 (2010), 23–32 | MR

[17] Bulinskaya E. Vl., “Limit distributions arising in branching random walks on integer lattices”, Lithuanian Math. J., 51:3 (2011), 310–321 | DOI | MR

[18] Karlin S., Taylor H. M., A Second Course in Stochastic Processes, Academic Press, New York–London, 1981 | MR | Zbl

[19] Lawler G. F., Intersections of Random Walks, Birkhäuser, Boston, 1996 | MR | Zbl

[20] Lawler G. F., Limic V., Random Walk: A Modern Introduction, Cambridge University Press, New York, 2010 | MR | Zbl

[21] Syski R., Passage Times for Markov Chains, IOS Press, Amsterdam, 1992 | MR | Zbl

[22] Vatutin V. A., Topchii V. A., Yarovaya E. B., “Catalytic branching random walks and queueing systems with a random number of independent servers”, Theory Probab. Math. Statist., 2004, no. 69, 1–15 | MR