Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MT_2012_15_1_a0, author = {E. Vl. Bulinskaya}, title = {Hitting times with taboo for a~random walk}, journal = {Matemati\v{c}eskie trudy}, pages = {3--26}, publisher = {mathdoc}, volume = {15}, number = {1}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MT_2012_15_1_a0/} }
E. Vl. Bulinskaya. Hitting times with taboo for a~random walk. Matematičeskie trudy, Tome 15 (2012) no. 1, pp. 3-26. http://geodesic.mathdoc.fr/item/MT_2012_15_1_a0/
[1] Afanasev V. I., Sluchainye bluzhdaniya i vetvyaschiesya protsessy, Lektsionnye kursy NOTs, 6, MIAN, M., 2007
[2] Borovkov A. A., Teoriya veroyatnostei, Uchebnoe posobie, 5-e izd., Knizhnyi dom “Librokom”, M., 2009
[3] Bulinskaya E. Vl., “Kataliticheskoe vetvyascheesya sluchainoe bluzhdanie po dvumernoi reshetke”, TVP, 55:1 (2010), 142–148 | MR
[4] Bulinskii A. V., Shiryaev A. N., Teoriya sluchainykh protsessov, Fizmatlit, M., 2005
[5] Vatutin V. A., Vetvyaschiesya protsessy Bellmana–Kharrisa, Lekts. kursy NOTs, 12, MIAN, M., 2009
[6] Vatutin V. A., Topchii V. A., “Kataliticheskoe vetvyascheesya sluchainoe bluzhdanie po $\mathbb Z^d$ s odnim istochnikom vetvleniya”, Matem. tr., 14:2 (2011), 28–72
[7] Gikhman I. I., Skorokhod A. V., Teoriya sluchainykh protsessov, v. 2, Nauka, M., 1973 | MR | Zbl
[8] Zubkov A. M., “Neravenstva dlya veroyatnostei perekhodov s zaprescheniyami i ikh primeneniya”, Matem. sb., 109(151):4(8) (1979), 491–532 | MR | Zbl
[9] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, v. 2, Mir, M., 1984 | Zbl
[10] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, v. 2, Fizmatlit, M., 2001
[11] Chzhun K. L., Odnorodnye tsepi Markova, Mir, M., 1964
[12] Shiryaev A. N., Veroyatnost, v. 1, MTsNMO, M., 2004
[13] Yarovaya E. B., Vetvyaschiesya sluchainye bluzhdaniya v neodnorodnoi srede, Izd-vo TsPI pri mekh.-mat. fakultete MGU, M., 2007
[14] Athreya K. B., Ney P. E., Branching Processes, Die Grundlehren der mathematischen Wissenschaften, 196, Springer, New York, 1972 | MR | Zbl
[15] Brémaud P., Markov Chains: Gibbs Fields, Monte-Carlo Simulation, and Queues, Springer-Verlag, New York, 1999 | MR | Zbl
[16] Bulinskaya E. Vl., “Catalytic branching random walk on three-dimensional lattice”, Theory Stoch. Process, 16:2 (2010), 23–32 | MR
[17] Bulinskaya E. Vl., “Limit distributions arising in branching random walks on integer lattices”, Lithuanian Math. J., 51:3 (2011), 310–321 | DOI | MR
[18] Karlin S., Taylor H. M., A Second Course in Stochastic Processes, Academic Press, New York–London, 1981 | MR | Zbl
[19] Lawler G. F., Intersections of Random Walks, Birkhäuser, Boston, 1996 | MR | Zbl
[20] Lawler G. F., Limic V., Random Walk: A Modern Introduction, Cambridge University Press, New York, 2010 | MR | Zbl
[21] Syski R., Passage Times for Markov Chains, IOS Press, Amsterdam, 1992 | MR | Zbl
[22] Vatutin V. A., Topchii V. A., Yarovaya E. B., “Catalytic branching random walks and queueing systems with a random number of independent servers”, Theory Probab. Math. Statist., 2004, no. 69, 1–15 | MR