Asymptotic analysis of boundary conditions for quintic splines
Matematičeskie trudy, Tome 14 (2011) no. 2, pp. 173-188.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article, we consider various boundary conditions for interpolation of quintic splines of defect 1 on a uniform mesh. We obtain an asymptotic representation of the approximation error for the spline for different boundary conditions. Boundary conditions that are optimal by approximation accuracy are found.
@article{MT_2011_14_2_a7,
     author = {S. S. Primakov},
     title = {Asymptotic analysis of boundary conditions for quintic splines},
     journal = {Matemati\v{c}eskie trudy},
     pages = {173--188},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2011_14_2_a7/}
}
TY  - JOUR
AU  - S. S. Primakov
TI  - Asymptotic analysis of boundary conditions for quintic splines
JO  - Matematičeskie trudy
PY  - 2011
SP  - 173
EP  - 188
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2011_14_2_a7/
LA  - ru
ID  - MT_2011_14_2_a7
ER  - 
%0 Journal Article
%A S. S. Primakov
%T Asymptotic analysis of boundary conditions for quintic splines
%J Matematičeskie trudy
%D 2011
%P 173-188
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2011_14_2_a7/
%G ru
%F MT_2011_14_2_a7
S. S. Primakov. Asymptotic analysis of boundary conditions for quintic splines. Matematičeskie trudy, Tome 14 (2011) no. 2, pp. 173-188. http://geodesic.mathdoc.fr/item/MT_2011_14_2_a7/

[1] Alberg Dzh., Nilson E., Uolsh Dzh., Teoriya splainov i ee prilozheniya, Mir, M., 1972 | MR | Zbl

[2] Zavyalov Yu. S., Kvasov B. I., Miroshnichenko V. L., Metody splain-funktsii, Nauka, M., 1980 | MR

[3] Kaliev P. U., “O poluchenii tochnykh otsenok pogreshnosti interpolyatsii funktsii splainami pyatoi stepeni defekta 1 na ravnomernoi setke”, Splainy v vychislitelnoi matematike, Sb. nauchn. tr. IM SO AN SSSR, Vychislitelnye sistemy, 115, Izd-vo In-ta matematiki, Novosibirsk, 1986, 26–40 | MR

[4] Kindalev B. S., “Asimptoticheskie formuly dlya splaina pyatoi stepeni i ikh primenenie”, Metody splain-funktsii, Sb. nauchn. tr. IM SO AN SSSR, Vychislitelnye sistemy, 87, Izd-vo In-ta matematiki, Novosibirsk, 1981, 18–24 | MR

[5] Korneichuk N. P., Splainy v teorii priblizheniya, Nauka, M., 1984 | MR

[6] Miroshnichenko V. L., “Ob interpolyatsii i approksimatsii splainami”, Problemy obrabotki informatsii, Sb. nauchn. tr. IM SO AN SSSR, Vychislitelnye sistemy, 100, Izd-vo In-ta matematiki, Novosibirsk, 1983, 83–100 | MR

[7] Miroshnichenko V. L., “O pogreshnosti priblizheniya kubicheskimi interpolyatsionnymi splainami”, Splain-approksimatsiya i chislennyi analiz, Sb. nauchn. tr. IM SO AN SSSR, Vychislitelnye sistemy, 108, Izd-vo In-ta matematiki, Novosibirsk, 1985, 3–30 | MR

[8] Primakov S. S., “Asimptoticheskii analiz kraevykh uslovii dlya splainov pyatoi stepeni”, Metody splain-funktsii, Tez. dokl. Ros. konf., posv. 80-letiyu so dnya rozhdeniya Yu. S. Zavyalova (31 yanv. – 2 fevr. 2011 g.), IM SO RAN, Novosibirsk, 2011, 77–78

[9] Fyfe D. I., “Linear dependence relations connecting equal interval N-th degree splines and their derivatives”, J. Inst. Math. Appl., 7 (1971), 398–406 | DOI | MR | Zbl