Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MT_2011_14_2_a7, author = {S. S. Primakov}, title = {Asymptotic analysis of boundary conditions for quintic splines}, journal = {Matemati\v{c}eskie trudy}, pages = {173--188}, publisher = {mathdoc}, volume = {14}, number = {2}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MT_2011_14_2_a7/} }
S. S. Primakov. Asymptotic analysis of boundary conditions for quintic splines. Matematičeskie trudy, Tome 14 (2011) no. 2, pp. 173-188. http://geodesic.mathdoc.fr/item/MT_2011_14_2_a7/
[1] Alberg Dzh., Nilson E., Uolsh Dzh., Teoriya splainov i ee prilozheniya, Mir, M., 1972 | MR | Zbl
[2] Zavyalov Yu. S., Kvasov B. I., Miroshnichenko V. L., Metody splain-funktsii, Nauka, M., 1980 | MR
[3] Kaliev P. U., “O poluchenii tochnykh otsenok pogreshnosti interpolyatsii funktsii splainami pyatoi stepeni defekta 1 na ravnomernoi setke”, Splainy v vychislitelnoi matematike, Sb. nauchn. tr. IM SO AN SSSR, Vychislitelnye sistemy, 115, Izd-vo In-ta matematiki, Novosibirsk, 1986, 26–40 | MR
[4] Kindalev B. S., “Asimptoticheskie formuly dlya splaina pyatoi stepeni i ikh primenenie”, Metody splain-funktsii, Sb. nauchn. tr. IM SO AN SSSR, Vychislitelnye sistemy, 87, Izd-vo In-ta matematiki, Novosibirsk, 1981, 18–24 | MR
[5] Korneichuk N. P., Splainy v teorii priblizheniya, Nauka, M., 1984 | MR
[6] Miroshnichenko V. L., “Ob interpolyatsii i approksimatsii splainami”, Problemy obrabotki informatsii, Sb. nauchn. tr. IM SO AN SSSR, Vychislitelnye sistemy, 100, Izd-vo In-ta matematiki, Novosibirsk, 1983, 83–100 | MR
[7] Miroshnichenko V. L., “O pogreshnosti priblizheniya kubicheskimi interpolyatsionnymi splainami”, Splain-approksimatsiya i chislennyi analiz, Sb. nauchn. tr. IM SO AN SSSR, Vychislitelnye sistemy, 108, Izd-vo In-ta matematiki, Novosibirsk, 1985, 3–30 | MR
[8] Primakov S. S., “Asimptoticheskii analiz kraevykh uslovii dlya splainov pyatoi stepeni”, Metody splain-funktsii, Tez. dokl. Ros. konf., posv. 80-letiyu so dnya rozhdeniya Yu. S. Zavyalova (31 yanv. – 2 fevr. 2011 g.), IM SO RAN, Novosibirsk, 2011, 77–78
[9] Fyfe D. I., “Linear dependence relations connecting equal interval N-th degree splines and their derivatives”, J. Inst. Math. Appl., 7 (1971), 398–406 | DOI | MR | Zbl