On extensions of partial $n$-quasigroups of order~4
Matematičeskie trudy, Tome 14 (2011) no. 2, pp. 147-172.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that every collection of pairwise compatible (nowhere coinciding) $n$-ary quasigroups of order 4 can be extended to an $(n+1)$-ary quasigroup. In other words, every Latin $4\times\cdots\times4\times l$-parallelepiped, where $l=1,2,3$, can be extended to a Latin hypercube.
@article{MT_2011_14_2_a6,
     author = {V. N. Potapov},
     title = {On extensions of partial $n$-quasigroups of order~4},
     journal = {Matemati\v{c}eskie trudy},
     pages = {147--172},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2011_14_2_a6/}
}
TY  - JOUR
AU  - V. N. Potapov
TI  - On extensions of partial $n$-quasigroups of order~4
JO  - Matematičeskie trudy
PY  - 2011
SP  - 147
EP  - 172
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2011_14_2_a6/
LA  - ru
ID  - MT_2011_14_2_a6
ER  - 
%0 Journal Article
%A V. N. Potapov
%T On extensions of partial $n$-quasigroups of order~4
%J Matematičeskie trudy
%D 2011
%P 147-172
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2011_14_2_a6/
%G ru
%F MT_2011_14_2_a6
V. N. Potapov. On extensions of partial $n$-quasigroups of order~4. Matematičeskie trudy, Tome 14 (2011) no. 2, pp. 147-172. http://geodesic.mathdoc.fr/item/MT_2011_14_2_a6/

[1] Belousov V. D., $n$-Arnye kvazigruppy, “Shtiintsa”, Kishinev, 1972 | MR

[2] Krotov D. S., Potapov V. N., “O kratnykh MDR- i sovershennykh kodakh, ne rasscheplyaemykh na odnokratnye”, Probl. peredachi inf., 40:1 (2004), 6–14 | MR | Zbl

[3] Potapov V. N., Krotov D. S., “Asimptotika chisla $n$-kvazigrupp poryadka 4”, Sib. matem. zhurn., 47:4 (2006), 873–887 | MR | Zbl

[4] Kholl M., Kombinatorika, Mir, M., 1970 | MR

[5] Cherëmushkin A. V., “Kanonicheskoe razlozhenie $n$-arnykh kvazigrupp”, Issledovanie operatsii i kvazigrupp, Matem. issledovaniya, 102, “Shtiintsa”, Kishinev, 1988, 97–105 | MR

[6] McKay B. D., Wanless I. M., “A census of small Latin hypercubes”, SIAM J. Discrete Math., 22:2 (2008), 719–736 | DOI | MR | Zbl

[7] Kochol M., “Latin $(n\times n\times(n-2))$-parallelepipeds not completing to a Latin cube”, Math. Slovaca, 39:2 (1989), 121–125 | MR | Zbl

[8] Kochol M., “Relatively narrow Latin parallelepipeds that cannot be extended to a Latin cube”, Ars Combin., 40 (1995), 247–260 | MR | Zbl

[9] Krotov D. S., “On irreducible $n$-ary quasigroups with reducible retracts”, European J. Combin., 29:2 (2008), 507–513 | DOI | MR | Zbl

[10] Krotov D. S., “On decomposability of 4-ary distance 2-MDS codes, double-codes, and $n$-quasigroups of order 4”, Discrete Math., 308:15 (2008), 3322–3334 | DOI | MR | Zbl

[11] Krotov D. S., “On the binary codes with parameters of doubly-shortened 1-perfect codes”, Des. Codes Cryptogr., 57:2 (2010), 181–194 | DOI | MR | Zbl

[12] Krotov D. S., Potapov V. N., “On the reconstruction of $n$-quasigroups of order 4 and the upper bounds on their numbers”, Proc. of the Conference devoted to the 90th anniversary of Alexei A. Lyapunov, Novosibirsk, Russia, 2001, 323–327 http://www.sbras.ru/ws/Lyap2001/2363

[13] Krotov D. S., Potapov V. N., “$n$-Ary quasigroups of order 4”, SIAM J. Discrete Math., 23:2 (2009), 561–570 | DOI | MR | Zbl

[14] Krotov D. S., Potapov V. N., Sokolova P. V., “On reconstructing reducible $n$-ary quasigroups and switching subquasigroups”, Quasigroups Related Systems, 16:1 (2008), 55–67 | MR | Zbl