On extensions of partial $n$-quasigroups of order~4
Matematičeskie trudy, Tome 14 (2011) no. 2, pp. 147-172
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove that every collection of pairwise compatible (nowhere coinciding) $n$-ary quasigroups of order 4 can be extended to an $(n+1)$-ary quasigroup. In other words, every Latin $4\times\cdots\times4\times l$-parallelepiped, where $l=1,2,3$, can be extended to a Latin hypercube.
@article{MT_2011_14_2_a6,
author = {V. N. Potapov},
title = {On extensions of partial $n$-quasigroups of order~4},
journal = {Matemati\v{c}eskie trudy},
pages = {147--172},
publisher = {mathdoc},
volume = {14},
number = {2},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MT_2011_14_2_a6/}
}
V. N. Potapov. On extensions of partial $n$-quasigroups of order~4. Matematičeskie trudy, Tome 14 (2011) no. 2, pp. 147-172. http://geodesic.mathdoc.fr/item/MT_2011_14_2_a6/