On extensions of partial $n$-quasigroups of order~4
Matematičeskie trudy, Tome 14 (2011) no. 2, pp. 147-172

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that every collection of pairwise compatible (nowhere coinciding) $n$-ary quasigroups of order 4 can be extended to an $(n+1)$-ary quasigroup. In other words, every Latin $4\times\cdots\times4\times l$-parallelepiped, where $l=1,2,3$, can be extended to a Latin hypercube.
@article{MT_2011_14_2_a6,
     author = {V. N. Potapov},
     title = {On extensions of partial $n$-quasigroups of order~4},
     journal = {Matemati\v{c}eskie trudy},
     pages = {147--172},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2011_14_2_a6/}
}
TY  - JOUR
AU  - V. N. Potapov
TI  - On extensions of partial $n$-quasigroups of order~4
JO  - Matematičeskie trudy
PY  - 2011
SP  - 147
EP  - 172
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2011_14_2_a6/
LA  - ru
ID  - MT_2011_14_2_a6
ER  - 
%0 Journal Article
%A V. N. Potapov
%T On extensions of partial $n$-quasigroups of order~4
%J Matematičeskie trudy
%D 2011
%P 147-172
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2011_14_2_a6/
%G ru
%F MT_2011_14_2_a6
V. N. Potapov. On extensions of partial $n$-quasigroups of order~4. Matematičeskie trudy, Tome 14 (2011) no. 2, pp. 147-172. http://geodesic.mathdoc.fr/item/MT_2011_14_2_a6/