Catalytic branching random walks in~$\mathbb Z^d$ with branching at the origin
Matematičeskie trudy, Tome 14 (2011) no. 2, pp. 28-72.

Voir la notice de l'article provenant de la source Math-Net.Ru

A time-continuous branching random walk on the lattice $\mathbb Z^d$, $d\ge1$, is considered when the particles may produce offspring at the origin only. We assume that the underlying Markov random walk is homogeneous and symmetric, the process is initiated at moment $t=0$ by a single particle located at the origin, and the average number of offspring produced at the origin is such that the corresponding branching random walk is critical. The asymptotic behavior of the survival probability of such a process at moment $t\to\infty$ and the presence of at least one particle at the origin is studied. In addition, we obtain the asymptotic expansions for the expectation of the number of particles at the origin and prove Yaglom-type conditional limit theorems for the number of particles located at the origin and beyond at moment $t$.
@article{MT_2011_14_2_a2,
     author = {V. A. Vatutin and V. A. Topchiǐ},
     title = {Catalytic branching random walks in~$\mathbb Z^d$ with branching at the origin},
     journal = {Matemati\v{c}eskie trudy},
     pages = {28--72},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2011_14_2_a2/}
}
TY  - JOUR
AU  - V. A. Vatutin
AU  - V. A. Topchiǐ
TI  - Catalytic branching random walks in~$\mathbb Z^d$ with branching at the origin
JO  - Matematičeskie trudy
PY  - 2011
SP  - 28
EP  - 72
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2011_14_2_a2/
LA  - ru
ID  - MT_2011_14_2_a2
ER  - 
%0 Journal Article
%A V. A. Vatutin
%A V. A. Topchiǐ
%T Catalytic branching random walks in~$\mathbb Z^d$ with branching at the origin
%J Matematičeskie trudy
%D 2011
%P 28-72
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2011_14_2_a2/
%G ru
%F MT_2011_14_2_a2
V. A. Vatutin; V. A. Topchiǐ. Catalytic branching random walks in~$\mathbb Z^d$ with branching at the origin. Matematičeskie trudy, Tome 14 (2011) no. 2, pp. 28-72. http://geodesic.mathdoc.fr/item/MT_2011_14_2_a2/

[1] Bogachev L. V., Yarovaya E. B., “Momentnyi analiz vetvyaschegosya sluchainogo bluzhdaniya na reshetke s odnim istochnikom”, Dokl. RAN, 363:4 (1998), 439–442 | MR | Zbl

[2] Bogachev L. V., Yarovaya E. B., “Predelnaya teorema dlya nadkriticheskogo vetvyaschegosya sluchainogo bluzhdaniya na $\mathbb Z^d$ s odnim istochnikom”, UMN, 53:5(323) (1998), 229–230 | MR | Zbl

[3] Borovkov A. A., “Zamechaniya k teoremam Vinera i Blekuella”, TVP, 9:2 (1964), 331–343 | MR | Zbl

[4] Borovkov A. A., Teoriya veroyatnostei, Editorial URSS, M., 1999 | MR

[5] Bulinskaya E. V., “Kataliticheskoe vetvyascheesya sluchainoe bluzhdanie po dvumernoi reshetke”, TVP, 55:1 (2010), 142–148 | MR

[6] Vatutin V. A., “Predelnaya teorema dlya kriticheskogo vetvyaschegosya protsessa Bellmana–Kharrisa s neskolkimi tipami chastits”, TVP, 23:4 (1978), 807–818 | MR | Zbl

[7] Vatutin V. A., “Diskretnye predelnye raspredeleniya chisla chastits v vetvyaschikhsya protsessakh Bellmana–Kharrisa s neskolkimi tipami chastits”, TVP, 24:3 (1979), 503–514 | MR | Zbl

[8] Vatutin V. A., “Ob odnom klasse kriticheskikh vetvyaschikhsya protsessov Bellmana–Kharrisa s neskolkimi tipami chastits”, TVP, 25:4 (1980), 771–781 | MR | Zbl

[9] Vatutin V. A., Topchii V. A., “Predelnaya teorema dlya kriticheskikh kataliticheskikh vetvyaschikhsya sluchainykh bluzhdanii”, TVP, 49:3 (2004), 461–484 | MR | Zbl

[10] Rogozin B. A., “Asimptotika koeffitsientov v teoremakh Levi–Vinera ob absolyutno skhodyaschikhsya trigonometricheskikh ryadakh”, Sib. matem. zhurn., 14:6 (1973), 1304–1312 | MR | Zbl

[11] Sgibnev M. S., “Asimptotika plotnosti funktsii vosstanovleniya”, Sib. matem. zhurn., 20:1 (1979), 141–151 | MR | Zbl

[12] Sgibnev M. S., “Banakhovy algebry mer klassa $\mathcal G(\gamma)$”, Sib. matem. zhurn., 29:4 (1988), 162–171 | MR | Zbl

[13] Sevastyanov B. A., Vetvyaschiesya protsessy, Nauka, M., 1971 | MR

[14] Spitser F., Printsipy sluchainogo bluzhdaniya, Mir, M., 1969

[15] Topchii V. A., “Predelnye teoremy dlya kriticheskikh obschikh protsessov s dolgozhivuschimi chastitsami”, Stokhasticheskie i determinirovannye modeli slozhnykh sistem, Sb. nauchn. tr., ed. V. A. Topchii, Vychislitelnyi tsentr SO AN SSSR, Novosibirsk, 1988, 114–153 | MR

[16] Topchii V. A., “Sovmestnye raspredeleniya dlya kriticheskikh obschikh vetvyaschikhsya protsessov s odnim tipom dolgozhivuschikh chastits”, Sib. matem. zhurn., 32:4 (1991), 153–164 | MR

[17] Topchii V. A., “Proizvodnaya plotnosti vosstanovleniya s beskonechnym momentom pri $\alpha\in(0,1/2]$”, Sib. elektron. matem. izv., 7 (2010), 340–349 | MR

[18] Fedoryuk M. V., Metod perevala, Nauka, M., 1977 | MR | Zbl

[19] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, v. 2, Mir, M., 1984 | Zbl

[20] Yakymiv A. L., “Mnogomernye tauberovy teoremy i ikh primenenie k vetvyaschimsya protsessam Bellmana–Kharrisa”, Matem. sb., 115(157):3(7) (1981), 463–477 | MR | Zbl

[21] Albeverio S., Bogachev L. V., “Branching random walk in a catalytic medium. I. Basic equations”, Positivity, 4:1 (2000), 41–100 | DOI | MR | Zbl

[22] Albeverio S., Bogachev L. V., Yarovaya E. B., “Asymptotics of branching symmetric random walk on the lattice with a single source”, C. R. Acad. Sci. Paris Sér. I Math., 326:8 (1998), 975–980 | DOI | MR | Zbl

[23] Athreya K. B., Ney P. E., Branching Processes, Die Grundlehren der Mathematischen Wissenschaften, 196, Springer-Verlag, New York–Heidelberg, 1972 | MR | Zbl

[24] Dawson D. A., Fleischmann K., “Longtime behavior of a branching process controlled by branching catalysts”, Stochastic Process. Appl., 71:2 (1997), 241–257 | DOI | MR | Zbl

[25] Erickson K. B., “Strong renewal theorems with infinite mean”, Trans. Amer. Math. Soc., 151 (1970), 263–291 | DOI | MR | Zbl

[26] Fleischmann K., “Superprocesses in catalytic media”, Measure-valued Processes, Stochastic Partial Differential Equations, and Interacting Systems, CRM Proc. Lecture Notes, 5, Amer. Math. Soc., Providence, RI, 1994, 99–110 | MR | Zbl

[27] Fleischmann K., Le Gall J.-F., “A new approach to the single point catalytic super-Brownian motion”, Probab. Theory Related Fields, 102:1 (1995), 63–82 | DOI | MR | Zbl

[28] Griffin P., “Accelerating beyond the third dimension: returning to the origin in simple random walk”, Math. Sci., 15:1 (1990), 24–35 | MR | Zbl

[29] Topchii V., “Renewal measure density for distributions with regularly varying tails of order $\alpha\in(0,1/2]$”, Workshop on Branching Processes and Their Applications, Lecture Notes in Statistics, 197, Springer, Berlin, 2010, 109–118 | MR

[30] Topchii V. A., Vatutin V. A., “Individuals at the origin in the critical catalytic branching random walk”, Discrete Random Walks, DRW' 03, (electronic only), Discrete Math. Theor. Comput. Sci. Proc. AC, eds. C. Banderier, C. Krattenthaler, 2003, 325–332 http://www.dmtcs.org/dmtcs-ojs/index.php/proceedings/article/view/dmAC0130 | MR | Zbl

[31] Topchii V. A., Vatutin V. A., “Two-dimensional limit theorem for a critical catalytic branching random walk”, Mathematics and Computer Science, Proc. of the Int. Colloq. of Mathematics and Computer Sciences, v. III, Algorithms, Trees, Combinatorics, and Probabilities, eds. M. Drmota, P. Flajolet, D. Gardy, B. Gittenberger, Birkhäuser, Basel–Boston–Berlin, 2004, 387–395 | MR | Zbl

[32] Topchii V. A., Vatutin V. A., Yarovaya E. B., “Catalytic branching random walk and queueing systems with a random number of independent servers”, Theory Probab. Math. Statist., 69 (2004), 1–15 | MR

[33] Vatutin V. A., Xiong J., “Some limit theorems for a particle system of single point catalytic branching random walks”, Acta Math. Sinica, 23:6 (2007), 997–1012 | DOI | MR | Zbl

[34] Vatutin V., Hu Yueyun, Topchii V., Branching random walk in $\mathbb Z^4$ with branching at the origin only, 24 Jun 2010, 23 pp., arXiv: 1006.4769v1[math.PR]