On infinity of the discrete spectrum of operators in the Friedrichs model
Matematičeskie trudy, Tome 14 (2011) no. 1, pp. 195-211 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The discrete spectrumof selfadjoint operators in the Friedrichs model is studied. Necessary and sufficient conditions of existence of infinitely many eigenvalues in the Friedrichs model are presented. A discrete spectrum of a model three-particle discrete Schrödinger operator is described.
@article{MT_2011_14_1_a7,
     author = {Yu. Kh. Eshkabilov},
     title = {On infinity of the discrete spectrum of operators in the {Friedrichs} model},
     journal = {Matemati\v{c}eskie trudy},
     pages = {195--211},
     year = {2011},
     volume = {14},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2011_14_1_a7/}
}
TY  - JOUR
AU  - Yu. Kh. Eshkabilov
TI  - On infinity of the discrete spectrum of operators in the Friedrichs model
JO  - Matematičeskie trudy
PY  - 2011
SP  - 195
EP  - 211
VL  - 14
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/MT_2011_14_1_a7/
LA  - ru
ID  - MT_2011_14_1_a7
ER  - 
%0 Journal Article
%A Yu. Kh. Eshkabilov
%T On infinity of the discrete spectrum of operators in the Friedrichs model
%J Matematičeskie trudy
%D 2011
%P 195-211
%V 14
%N 1
%U http://geodesic.mathdoc.fr/item/MT_2011_14_1_a7/
%G ru
%F MT_2011_14_1_a7
Yu. Kh. Eshkabilov. On infinity of the discrete spectrum of operators in the Friedrichs model. Matematičeskie trudy, Tome 14 (2011) no. 1, pp. 195-211. http://geodesic.mathdoc.fr/item/MT_2011_14_1_a7/

[1] Berezin F. A., Shubin M. A., Uravnenie Shredingera, MGU, M., 1983 | MR

[2] Efimov V. N., “Svyazannye sostoyaniya trekh rezonansov vzaimodeistvuyuschikh chastits”, Yadernaya fizika, 12:5 (1970), 1080–1091

[3] Imomkulov S. A., Lakaev S. N., “Diskretnyi spektr odnomernoi modeli Fridrikhsa”, Dokl. AN UzSSR, 1988, no. 7, 9–11 | MR | Zbl

[4] Ladyzhenskaya O. A., Faddeev L. D., “K teorii vozmuschenii nepreryvnogo spektra”, Dokl. AN SSSR, 145:2 (1962), 301–304

[5] Lakaev S. N., “O diskretnom spektre obobschennoi modeli Fridrikhsa”, Dokl. AN UzSSR, 1979, no. 4, 9–10 | MR | Zbl

[6] Lakaev S. N., “Nekotorye spektralnye svoistva obobschennoi modeli Fridrikhsa”, Tr. seminara I. G. Petrovskogo, 11, 1986, 210–238 | Zbl

[7] Lakaev S. N., “O beskonechnom chisle trekhchastichnykh svyazannykh sostoyanii sistemy trekh kvantovykh reshetchatykh chastits”, TMF, 89:1 (1991), 94–104 | MR

[8] Lakaev S. N., “Ob effekte Efimova v sisteme trekh odinakovykh kvantovykh chastits”, Funkts. analiz i ego pril., 27:3 (1993), 15–28 | MR | Zbl

[9] Lakaev S. N., Minlos R. A., “O svyazannykh sostoyaniyakh klasternogo operatora”, TMF, 39:1 (1979), 83–93 | MR

[10] Merkurev S. P., Faddeev L. D., Kvantovaya teoriya rasseyaniya dlya sistem neskolkikh chastits, Nauka, M., 1985 | MR

[11] Minlos R. A., Sinai Ya. G., “Issledovanie spektrov stokhasticheskikh operatorov, voznikayuschikh v reshetchatykh modelyakh gaza”, TMF, 2:2 (1970), 230–243 | MR

[12] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, v. 1, Funktsionalnyi analiz, Mir, M., 1977 | MR

[13] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, v. 4, Analiz operatorov, Mir, M., 1982 | MR

[14] Faddeev L. D., “O modeli Fridrikhsa v teorii vozmuschenii nepreryvnogo spektra”, Kraevye zadachi matematicheskoi fiziki. 2, Sbornik rabot. Posvyaschaetsya pamyati V. A. Steklova v svyazi so stoletiem so dnya ego rozhdeniya, Tr. MIAN SSSR, 73, Nauka, M.–L., 1964, 292–313 | MR | Zbl

[15] Eshkabilov Yu. Kh., “Ob odnom diskretnom “trekhchastichnom” operatore Shredingera v modeli Khabbarda”, TMF, 149:2 (2006), 228–243 | MR

[16] Yafaev D. R., “K teorii diskretnogo spektra trekhchastichnogo operatora Shredingera”, Matem. sb., 94(136):4(8) (1974), 567–593 | MR | Zbl

[17] Abdullaev J. I., Lakaev S. N., “On the spectral properties of the matrix-valued Friedrichs model”, Many-Particle Hamiltonians: Spectra and Scattering, Adv. Soviet Math., 5, Amer. Math. Soc., Providence, RI, 1991, 1–37 | MR

[18] Amado R. D., Noble J. V., “Efimov's effect: a new pathology of three-particle systems. I”, Phys. Lett. B, 35:1 (1971), 25–27 | DOI | MR

[19] Amado R. D., Noble J. V., “Efimov's effect: a new pathology of three-particle systems. II”, Phys. Rev. D, 5:8 (1972), 1992–2002 | DOI

[20] Friedrichs K. O., “Über die Spectralzerlegung eines Integral Operators”, Math. Ann., 115:1 (1938), 249–272 | DOI | MR | Zbl

[21] Mattis D. C., “The few-body problem on a lattice”, Rev. Modern Phys., 58:2 (1986), 361–379 | DOI | MR | Zbl

[22] Mogilner A. I., “The problem of a few quasi-particles in SSPh”, Application of Self-Adjoint Extensions in Quantum Physics, Lecture Notes in Physics, 324, eds. P. Exner, P. Seba, Springer-Verlag, Berlin, 1988

[23] Ovchinnikov Yu. N., Sigal I. M., “Number of bound states of three-body systems and Efimov's effect”, Ann. Physics, 123:2 (1979), 274–295 | DOI | MR

[24] Tamura H., “The Efimov effect of three-body Schrödinger operators”, J. Funct. Anal., 95:2 (1991), 433–459 | DOI | MR | Zbl