On the independence property of first order theories and indiscernible sequences
Matematičeskie trudy, Tome 14 (2011) no. 1, pp. 126-140 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We refute the strong version of Shelah's conjecture about models of large cardinalities, the independence property, and indiscernible sequences. We find necessary and sufficient conditions for a theory to lack the independence property and present applications of these conditions.
@article{MT_2011_14_1_a4,
     author = {K. Zh. Kudaibergenov},
     title = {On the independence property of first order theories and indiscernible sequences},
     journal = {Matemati\v{c}eskie trudy},
     pages = {126--140},
     year = {2011},
     volume = {14},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2011_14_1_a4/}
}
TY  - JOUR
AU  - K. Zh. Kudaibergenov
TI  - On the independence property of first order theories and indiscernible sequences
JO  - Matematičeskie trudy
PY  - 2011
SP  - 126
EP  - 140
VL  - 14
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/MT_2011_14_1_a4/
LA  - ru
ID  - MT_2011_14_1_a4
ER  - 
%0 Journal Article
%A K. Zh. Kudaibergenov
%T On the independence property of first order theories and indiscernible sequences
%J Matematičeskie trudy
%D 2011
%P 126-140
%V 14
%N 1
%U http://geodesic.mathdoc.fr/item/MT_2011_14_1_a4/
%G ru
%F MT_2011_14_1_a4
K. Zh. Kudaibergenov. On the independence property of first order theories and indiscernible sequences. Matematičeskie trudy, Tome 14 (2011) no. 1, pp. 126-140. http://geodesic.mathdoc.fr/item/MT_2011_14_1_a4/

[1] Ershov Yu. L., Palyutin E. A., Matematicheskaya logika, Nauka, M., 1987 | MR | Zbl

[2] Kudaibergenov K. Zh., “Slabo kvazi-minimalnye modeli”, Matem. tr., 13:1 (2010), 156–168 | MR

[3] Belegradek O., Peterzil Y., Wagner F., “Quasi-minimal structures”, J. Symbolic Logic, 65:3 (2000), 1115–1132 | DOI | MR | Zbl

[4] Macpherson D., Marker D., Steinhorn C., “Weakly o-minimal structures and real closed fields”, Trans. Amer. Math. Soc., 352:12 (2000), 5435–5483 | DOI | MR | Zbl

[5] Parigot M., “Théories d'arbres”, J. Symbolic Logic, 47:4 (1982), 841–853 | DOI | MR | Zbl

[6] Pillay A., Steinhorn C., “Definable sets in ordered structures. I”, Trans. Amer. Math. Soc., 295:2 (1986), 565–592 | DOI | MR | Zbl

[7] Poizat B., “Théories instables”, J. Symbolic Logic, 46:3 (1981), 513–522 | DOI | MR | Zbl

[8] Shelah S., Classification Theory and the Number of Nonisomorphic Models, Studies in Logic and the Foundations of Mathematics, 92, North-Holland Publishing Co., Amsterdam–New York, 1978 | MR | Zbl

[9] Shelah S., Around Classification Theory of Models, Lecture Notes in Math., 1182, Springer, Berlin, 1986 | Zbl