On the independence property of first order theories and indiscernible sequences
Matematičeskie trudy, Tome 14 (2011) no. 1, pp. 126-140

Voir la notice de l'article provenant de la source Math-Net.Ru

We refute the strong version of Shelah's conjecture about models of large cardinalities, the independence property, and indiscernible sequences. We find necessary and sufficient conditions for a theory to lack the independence property and present applications of these conditions.
@article{MT_2011_14_1_a4,
     author = {K. Zh. Kudaibergenov},
     title = {On the independence property of first order theories and indiscernible sequences},
     journal = {Matemati\v{c}eskie trudy},
     pages = {126--140},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2011_14_1_a4/}
}
TY  - JOUR
AU  - K. Zh. Kudaibergenov
TI  - On the independence property of first order theories and indiscernible sequences
JO  - Matematičeskie trudy
PY  - 2011
SP  - 126
EP  - 140
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2011_14_1_a4/
LA  - ru
ID  - MT_2011_14_1_a4
ER  - 
%0 Journal Article
%A K. Zh. Kudaibergenov
%T On the independence property of first order theories and indiscernible sequences
%J Matematičeskie trudy
%D 2011
%P 126-140
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2011_14_1_a4/
%G ru
%F MT_2011_14_1_a4
K. Zh. Kudaibergenov. On the independence property of first order theories and indiscernible sequences. Matematičeskie trudy, Tome 14 (2011) no. 1, pp. 126-140. http://geodesic.mathdoc.fr/item/MT_2011_14_1_a4/