On some nonlocal boundary value problems for evolution equations
Matematičeskie trudy, Tome 13 (2010) no. 2, pp. 179-207.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the Sobolev–Besov spaces, we examine the question on solvability of nonlocal boundary value problems for operator-differential equations of the form $u_t-Lu+\gamma u=f$, $u(0)=Bu+u_0$, where $B$ is a linear operator, $L$ is a positive operator, and $\gamma$ is a real parameter. Under certain conditions on the parameter $\gamma$ and the data, the existence and uniqueness theorems for solutions to this boundary value problem are proven. The results are applied to studying nonlocal boundary value problems for parabolic equations and systems.
@article{MT_2010_13_2_a6,
     author = {M. V. Uvarova},
     title = {On some nonlocal boundary value problems for evolution equations},
     journal = {Matemati\v{c}eskie trudy},
     pages = {179--207},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2010_13_2_a6/}
}
TY  - JOUR
AU  - M. V. Uvarova
TI  - On some nonlocal boundary value problems for evolution equations
JO  - Matematičeskie trudy
PY  - 2010
SP  - 179
EP  - 207
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2010_13_2_a6/
LA  - ru
ID  - MT_2010_13_2_a6
ER  - 
%0 Journal Article
%A M. V. Uvarova
%T On some nonlocal boundary value problems for evolution equations
%J Matematičeskie trudy
%D 2010
%P 179-207
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2010_13_2_a6/
%G ru
%F MT_2010_13_2_a6
M. V. Uvarova. On some nonlocal boundary value problems for evolution equations. Matematičeskie trudy, Tome 13 (2010) no. 2, pp. 179-207. http://geodesic.mathdoc.fr/item/MT_2010_13_2_a6/

[1] Belonosov V. S., “Otsenki reshenii parabolicheskikh sistem v vesovykh klassakh Gëldera i nekotorye ikh prilozheniya”, Mat. sb., 110(152):2 (1979), 163–188 | MR | Zbl

[2] Vlasii O. D., Ptashnik B. I., “Nelokalnaya kraevaya zadacha dlya lineinykh uravnenii s chastnymi proizvodnymi, ne razreshennykh otnositelno starshei proizvodnoi po vremeni”, Ukrainskii mat. zhurn., 59:3 (2007), 370–381 | MR

[3] Kerefov A. A., “Nelokalnye granichnye zadachi dlya parabolicheskikh uravnenii”, Differents. uravneniya, 15:1 (1979), 74–78 | MR | Zbl

[4] Kerefov A. A., Shkhanukov-Lafishev M. Kh., Kuliev R. S., “Kraevye zadachi dlya nagruzhennogo uravneniya teploprovodnosti s nelokalnymi usloviyami tipa Steklova”, Neklassicheskie uravneniya matematicheskoi fiziki, Tr. seminara, posvyaschennogo 60-letiyu prof. V. N. Vragova, Izd-vo In-ta matematiki, Novosibirsk, 2005, 152–159 | Zbl

[5] Kozhanov A. I., “Nelokalnaya po vremeni kraevaya zadacha dlya lineinykh parabolicheskikh uravnenii”, Sib. zhurn. ind. mat., 7:1(17) (2004), 51–60 | MR | Zbl

[6] Koltunovskii O. A., “Pervaya kraevaya zadacha dlya odnogo klassa nelineinykh nagruzhennykh parabolicheskikh uravnenii”, Neklassicheskie uravneniya matematicheskoi fiziki, Sbornik nauchnykh rabot, Izd-vo In-ta matematiki, Novosibirsk, 2002, 110–116

[7] Liberman G. M., “Nelokalnye zadachi dlya kvazilineinykh parabolicheskikh uravnenii”, Nelineinye zadachi matematicheskoi fiziki i smezhnye voprosy, Mezhdunarodnaya matematicheskaya seriya, 1, Izd-vo In-ta matematiki, Novosibirsk, 2002, 233–254

[8] Tribel Kh., Teoriya interpolyatsii, funktsionalnye prostranstva, differentsialnye operatory, Mir, M., 1980 | MR

[9] Shelukhin V. V., “Zadacha o prognoze temperatury okeana po srednim dannym za predshestvuyuschei period vremeni”, Dokl. RAN, 324:4 (1992), 760–764 | MR | Zbl

[10] Shelukhin V. V., “Variatsionnyi printsip v nelokalnykh po vremeni zadachakh lineinykh evolyutsionnykh uravnenii”, Sib. mat. zhurn., 34:2 (1993), 191–207 | MR | Zbl

[11] Agarwal R. P., Bohner M., Shakhmurov V. B., “Maximal regular boundary value problems in Banach-valued weighted spaces”, Bound. Value Probl., 9:1 (2005), 9–42 | DOI | MR | Zbl

[12] Agarwal R. P., Bohner M., Shakhmurov V. B., “Linear and nonlinear nonlocal boundary value problems for differential-operator equations”, Appl. Anal., 85:6–7 (2006), 701–716 | DOI | MR | Zbl

[13] Ashyralyev A., “Nonlocal boundary-value problems for PDE: well-posedness”, Global Analysis and Applied Mathematics, Proc. Int. Workshop on Global Analysis (Ankara, Turkey, April 15–17, 2004), AIP Conf. Proc., 729, American Institute of Physics, Melville, NY, 2004, 325–331 | MR | Zbl

[14] Byszewski L., “Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem”, J. Math. Appl. Anal., 162:2 (1991), 494–505 | DOI | MR | Zbl

[15] Byszewski L., Lakshmikantham V., “Theorems about the existence and uniqueness of solutions of a nonlocal abstract Cauchy problem in a Banach space”, Appl. Anal., 40:1 (1991), 11–19 | DOI | MR | Zbl

[16] Chabrowski J., “On nonlocal problems for parabolic equations”, Nagoya Math. J., 93 (1984), 109–131 | MR | Zbl

[17] Chabrowski J., “On the nonlocal problem with a functional for parabolic equation”, Funkcial. Ekvac. Ser. Int., 27:1 (1984), 101–123 | MR | Zbl

[18] Da Prato G., Grisvard P., “Sommes d'opérateurs linéaires et équations différentielles opérationnelles”, J. Math. Pures Appl. (9), 54:3 (1975), 305–387 | MR | Zbl

[19] Denk R., Hieber M., Prüss J., $\mathcal R$-boundedness, Fourier multipliers, and problems of elliptic and parabolic type, Mem. Amer. Math. Soc., 166, no. 788, 2003 | MR

[20] Denk R., Krainer T., “$\mathcal R$-boundedness, pseudodifferential operators, and maximal regularity for some classes of partial differential operators”, Manuscripta Math., 124:3 (2007), 319–342 | DOI | MR | Zbl

[21] Denk R., Hieber M., Prüss J., “Optimal $L^p$-$L^q$-estimates for parabolic boundary value problems with inhomogeneous data”, Math. Z., 257:1 (2007), 193–224 | DOI | MR | Zbl

[22] Engel K.-J., Nagel R., One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics, 194, Springer-Verlag, New York, 2000 | MR | Zbl

[23] Gil' M. I., “Nonlocal initial problem for nonlinear nonautonomous differential equations in a Banach space”, Ann. Differential Equations, 20:2 (2004), 145–154 | MR | Zbl

[24] Grisvard P., “Commutativité de deux foncteurs d'intérpolation et applications”, J. Math. Pures Appl. (9), 45:2 (1966), 143–206 | MR | Zbl

[25] Grisvard P., “Équations différentielles abstraites”, Ann. Sci. École Norm. Sup. (4), 2 (1969), 311–395 | MR | Zbl

[26] Haase M., The functional calculus for sectorial operators, Operator Theory: Advances and Applications, 169, Birkhäuser, Basel, 2006 | MR | Zbl

[27] Kengne E., “On the well-posedness of a two-point boundary-value problem for a system with pseudodifferential operators”, Ukrainian Math. J., 57:8 (2005), 1334–1340 | DOI | MR | Zbl

[28] Kunstmann P. C., Weis L., “Maximal $L_p$-regularity for parabolic equations, Fourier multiplier theorems, and $H^\infty$-functional calculus”, Functional Analytic Methods for Evolution Equations, Lecture Notes in Math., 1855, Springer, Berlin, 2004, 65–311 | MR | Zbl

[29] Olmstead W. E., Roberts C. A., “The one-dimensional heat equation with a nonlocal initial condition”, Appl. Math. Lett., 10:3 (1997), 89–94 | DOI | MR | Zbl

[30] Prūss J., Simonett G., “Maximal regularity for evolution equations in weighted $L_p$-spaces”, Arch. Math. (Basel), 82:5 (2004), 415–431 | MR

[31] Pukal's'kiĭ I. D., “A one-sided nonlocal boundary value problem for singular parabolic equations”, Ukrainian Math. J., 53:11 (2001), 1851–1864 | DOI | MR

[32] Pyatkov S. G., Operator Theory. Nonclassical Problems, Inverse and Ill-posed Problems Series, VSP, Utrecht–Boston–Köln–Tokyo, 2002 | MR | Zbl

[33] Shakhmurov V. B., “Maximal regular boundary value problems in Banach-valued function spaces and applications”, Int. J. Math. Math. Sci., 2006, Art. ID 92134, 26 pp. | MR