Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MT_2010_13_2_a6, author = {M. V. Uvarova}, title = {On some nonlocal boundary value problems for evolution equations}, journal = {Matemati\v{c}eskie trudy}, pages = {179--207}, publisher = {mathdoc}, volume = {13}, number = {2}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MT_2010_13_2_a6/} }
M. V. Uvarova. On some nonlocal boundary value problems for evolution equations. Matematičeskie trudy, Tome 13 (2010) no. 2, pp. 179-207. http://geodesic.mathdoc.fr/item/MT_2010_13_2_a6/
[1] Belonosov V. S., “Otsenki reshenii parabolicheskikh sistem v vesovykh klassakh Gëldera i nekotorye ikh prilozheniya”, Mat. sb., 110(152):2 (1979), 163–188 | MR | Zbl
[2] Vlasii O. D., Ptashnik B. I., “Nelokalnaya kraevaya zadacha dlya lineinykh uravnenii s chastnymi proizvodnymi, ne razreshennykh otnositelno starshei proizvodnoi po vremeni”, Ukrainskii mat. zhurn., 59:3 (2007), 370–381 | MR
[3] Kerefov A. A., “Nelokalnye granichnye zadachi dlya parabolicheskikh uravnenii”, Differents. uravneniya, 15:1 (1979), 74–78 | MR | Zbl
[4] Kerefov A. A., Shkhanukov-Lafishev M. Kh., Kuliev R. S., “Kraevye zadachi dlya nagruzhennogo uravneniya teploprovodnosti s nelokalnymi usloviyami tipa Steklova”, Neklassicheskie uravneniya matematicheskoi fiziki, Tr. seminara, posvyaschennogo 60-letiyu prof. V. N. Vragova, Izd-vo In-ta matematiki, Novosibirsk, 2005, 152–159 | Zbl
[5] Kozhanov A. I., “Nelokalnaya po vremeni kraevaya zadacha dlya lineinykh parabolicheskikh uravnenii”, Sib. zhurn. ind. mat., 7:1(17) (2004), 51–60 | MR | Zbl
[6] Koltunovskii O. A., “Pervaya kraevaya zadacha dlya odnogo klassa nelineinykh nagruzhennykh parabolicheskikh uravnenii”, Neklassicheskie uravneniya matematicheskoi fiziki, Sbornik nauchnykh rabot, Izd-vo In-ta matematiki, Novosibirsk, 2002, 110–116
[7] Liberman G. M., “Nelokalnye zadachi dlya kvazilineinykh parabolicheskikh uravnenii”, Nelineinye zadachi matematicheskoi fiziki i smezhnye voprosy, Mezhdunarodnaya matematicheskaya seriya, 1, Izd-vo In-ta matematiki, Novosibirsk, 2002, 233–254
[8] Tribel Kh., Teoriya interpolyatsii, funktsionalnye prostranstva, differentsialnye operatory, Mir, M., 1980 | MR
[9] Shelukhin V. V., “Zadacha o prognoze temperatury okeana po srednim dannym za predshestvuyuschei period vremeni”, Dokl. RAN, 324:4 (1992), 760–764 | MR | Zbl
[10] Shelukhin V. V., “Variatsionnyi printsip v nelokalnykh po vremeni zadachakh lineinykh evolyutsionnykh uravnenii”, Sib. mat. zhurn., 34:2 (1993), 191–207 | MR | Zbl
[11] Agarwal R. P., Bohner M., Shakhmurov V. B., “Maximal regular boundary value problems in Banach-valued weighted spaces”, Bound. Value Probl., 9:1 (2005), 9–42 | DOI | MR | Zbl
[12] Agarwal R. P., Bohner M., Shakhmurov V. B., “Linear and nonlinear nonlocal boundary value problems for differential-operator equations”, Appl. Anal., 85:6–7 (2006), 701–716 | DOI | MR | Zbl
[13] Ashyralyev A., “Nonlocal boundary-value problems for PDE: well-posedness”, Global Analysis and Applied Mathematics, Proc. Int. Workshop on Global Analysis (Ankara, Turkey, April 15–17, 2004), AIP Conf. Proc., 729, American Institute of Physics, Melville, NY, 2004, 325–331 | MR | Zbl
[14] Byszewski L., “Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem”, J. Math. Appl. Anal., 162:2 (1991), 494–505 | DOI | MR | Zbl
[15] Byszewski L., Lakshmikantham V., “Theorems about the existence and uniqueness of solutions of a nonlocal abstract Cauchy problem in a Banach space”, Appl. Anal., 40:1 (1991), 11–19 | DOI | MR | Zbl
[16] Chabrowski J., “On nonlocal problems for parabolic equations”, Nagoya Math. J., 93 (1984), 109–131 | MR | Zbl
[17] Chabrowski J., “On the nonlocal problem with a functional for parabolic equation”, Funkcial. Ekvac. Ser. Int., 27:1 (1984), 101–123 | MR | Zbl
[18] Da Prato G., Grisvard P., “Sommes d'opérateurs linéaires et équations différentielles opérationnelles”, J. Math. Pures Appl. (9), 54:3 (1975), 305–387 | MR | Zbl
[19] Denk R., Hieber M., Prüss J., $\mathcal R$-boundedness, Fourier multipliers, and problems of elliptic and parabolic type, Mem. Amer. Math. Soc., 166, no. 788, 2003 | MR
[20] Denk R., Krainer T., “$\mathcal R$-boundedness, pseudodifferential operators, and maximal regularity for some classes of partial differential operators”, Manuscripta Math., 124:3 (2007), 319–342 | DOI | MR | Zbl
[21] Denk R., Hieber M., Prüss J., “Optimal $L^p$-$L^q$-estimates for parabolic boundary value problems with inhomogeneous data”, Math. Z., 257:1 (2007), 193–224 | DOI | MR | Zbl
[22] Engel K.-J., Nagel R., One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics, 194, Springer-Verlag, New York, 2000 | MR | Zbl
[23] Gil' M. I., “Nonlocal initial problem for nonlinear nonautonomous differential equations in a Banach space”, Ann. Differential Equations, 20:2 (2004), 145–154 | MR | Zbl
[24] Grisvard P., “Commutativité de deux foncteurs d'intérpolation et applications”, J. Math. Pures Appl. (9), 45:2 (1966), 143–206 | MR | Zbl
[25] Grisvard P., “Équations différentielles abstraites”, Ann. Sci. École Norm. Sup. (4), 2 (1969), 311–395 | MR | Zbl
[26] Haase M., The functional calculus for sectorial operators, Operator Theory: Advances and Applications, 169, Birkhäuser, Basel, 2006 | MR | Zbl
[27] Kengne E., “On the well-posedness of a two-point boundary-value problem for a system with pseudodifferential operators”, Ukrainian Math. J., 57:8 (2005), 1334–1340 | DOI | MR | Zbl
[28] Kunstmann P. C., Weis L., “Maximal $L_p$-regularity for parabolic equations, Fourier multiplier theorems, and $H^\infty$-functional calculus”, Functional Analytic Methods for Evolution Equations, Lecture Notes in Math., 1855, Springer, Berlin, 2004, 65–311 | MR | Zbl
[29] Olmstead W. E., Roberts C. A., “The one-dimensional heat equation with a nonlocal initial condition”, Appl. Math. Lett., 10:3 (1997), 89–94 | DOI | MR | Zbl
[30] Prūss J., Simonett G., “Maximal regularity for evolution equations in weighted $L_p$-spaces”, Arch. Math. (Basel), 82:5 (2004), 415–431 | MR
[31] Pukal's'kiĭ I. D., “A one-sided nonlocal boundary value problem for singular parabolic equations”, Ukrainian Math. J., 53:11 (2001), 1851–1864 | DOI | MR
[32] Pyatkov S. G., Operator Theory. Nonclassical Problems, Inverse and Ill-posed Problems Series, VSP, Utrecht–Boston–Köln–Tokyo, 2002 | MR | Zbl
[33] Shakhmurov V. B., “Maximal regular boundary value problems in Banach-valued function spaces and applications”, Int. J. Math. Math. Sci., 2006, Art. ID 92134, 26 pp. | MR