On some nonlocal boundary value problems for evolution equations
Matematičeskie trudy, Tome 13 (2010) no. 2, pp. 179-207

Voir la notice de l'article provenant de la source Math-Net.Ru

In the Sobolev–Besov spaces, we examine the question on solvability of nonlocal boundary value problems for operator-differential equations of the form $u_t-Lu+\gamma u=f$, $u(0)=Bu+u_0$, where $B$ is a linear operator, $L$ is a positive operator, and $\gamma$ is a real parameter. Under certain conditions on the parameter $\gamma$ and the data, the existence and uniqueness theorems for solutions to this boundary value problem are proven. The results are applied to studying nonlocal boundary value problems for parabolic equations and systems.
@article{MT_2010_13_2_a6,
     author = {M. V. Uvarova},
     title = {On some nonlocal boundary value problems for evolution equations},
     journal = {Matemati\v{c}eskie trudy},
     pages = {179--207},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2010_13_2_a6/}
}
TY  - JOUR
AU  - M. V. Uvarova
TI  - On some nonlocal boundary value problems for evolution equations
JO  - Matematičeskie trudy
PY  - 2010
SP  - 179
EP  - 207
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2010_13_2_a6/
LA  - ru
ID  - MT_2010_13_2_a6
ER  - 
%0 Journal Article
%A M. V. Uvarova
%T On some nonlocal boundary value problems for evolution equations
%J Matematičeskie trudy
%D 2010
%P 179-207
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2010_13_2_a6/
%G ru
%F MT_2010_13_2_a6
M. V. Uvarova. On some nonlocal boundary value problems for evolution equations. Matematičeskie trudy, Tome 13 (2010) no. 2, pp. 179-207. http://geodesic.mathdoc.fr/item/MT_2010_13_2_a6/