O-stable ordered groups
Matematičeskie trudy, Tome 13 (2010) no. 2, pp. 84-127.

Voir la notice de l'article provenant de la source Math-Net.Ru

An ordered structure $\mathcal M$ is said to be o-$\lambda$-stable if, for every $A\subseteq\mathcal M$ with $|A|\le\lambda$ and every cut in $\mathcal M$, at most $\lambda$ 1-types over $A$ are consistent with the cut. In the present article, we prove that every o-stable group is abelian. We also study definable subsets and unary functions of o-stable groups.
@article{MT_2010_13_2_a3,
     author = {V. V. Verbovskiiǐ},
     title = {O-stable ordered groups},
     journal = {Matemati\v{c}eskie trudy},
     pages = {84--127},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2010_13_2_a3/}
}
TY  - JOUR
AU  - V. V. Verbovskiiǐ
TI  - O-stable ordered groups
JO  - Matematičeskie trudy
PY  - 2010
SP  - 84
EP  - 127
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2010_13_2_a3/
LA  - ru
ID  - MT_2010_13_2_a3
ER  - 
%0 Journal Article
%A V. V. Verbovskiiǐ
%T O-stable ordered groups
%J Matematičeskie trudy
%D 2010
%P 84-127
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2010_13_2_a3/
%G ru
%F MT_2010_13_2_a3
V. V. Verbovskiiǐ. O-stable ordered groups. Matematičeskie trudy, Tome 13 (2010) no. 2, pp. 84-127. http://geodesic.mathdoc.fr/item/MT_2010_13_2_a3/

[1] Baizhanov B., Verbovskii V., Uporyadochenno stabilnye teorii, Preprint, In-t problem informatiki i upravleniya, Almaty, 2010

[2] Verbovskii V., “O zavisimosti uporyadochenno stabilnykh teorii”, Vestn. inzh. akad. Respubliki Kazakhstan, 2008, no. 1, 16–20

[3] Baldwin J., Saxl J., “Logical stability in group theory”, J. Austral. Math. Soc. Ser. A, 21:3 (1976), 267–276 | DOI | MR | Zbl

[4] Belegradek O., Peterzil Ya., Wagner F., “Quasi-$o$-minimal structures”, J. Symbolic Logic, 65:3 (2000), 1115–1132 | DOI | MR | Zbl

[5] Belegradek O., Verbovskiy V., Wagner F., “Coset-minimal groups”, Ann. Pure Appl. Logic, 121:2–3 (2003), 113–143 | DOI | MR | Zbl

[6] Dickmann M., “Elimination of quantifiers for ordered valuation rings”, Proc. of the 3rd Easter Conf. on Model Theory (Gross Koris, 1985), Seminarberichte, 70, Humboldt Univ., Berlin, 1985, 64–88 | MR | Zbl

[7] Hrushovski E., Pillay A., “Weakly normal groups”, Logic Colloquium' 85 (Orsay, 1985), Stud. Logic Found. Math., 122, North-Holland, Amsterdam, 1987, 233–244 | MR

[8] Kulpeshov B., “Weakly o-minimal structures and some of their properties”, J. Symbolic Logic, 63:4 (1998), 1511–1527 | DOI | MR

[9] Macpherson D., Marker D., Steinhorn Ch., “Weakly $o$-minimal structures and real closed fields”, Trans. Amer. Math. Soc., 352:12 (2000), 5435–5483 | DOI | MR | Zbl

[10] Pillay A., Steinhorn Ch., “Definable sets in ordered structures. I”, Trans. Amer. Math. Soc., 295:2 (1986), 565–592 | DOI | MR | Zbl

[11] Point F., Wagner F., “Essentially periodic ordered groups”, Ann. Pure Appl. Logic, 105:1–3 (2000), 261–291 | DOI | MR | Zbl

[12] Poizat B., Groupes Stables, Nur al-Mantiq wal-Márifah, 2, Bruno Poizat, Lyon, 1987 | MR | Zbl

[13] Robinson A., Zakon E., “Elementary properties of ordered abelian groups”, Trans. Amer. Math. Soc., 96 (1960), 222–236 | MR | Zbl

[14] Shelah S., “Dependent first order theories, continued”, Israel J. Math., 173 (2009), 1–60 | DOI | MR | Zbl

[15] Verbovskiy V., “Non-uniformly weakly o-minimal group”, Algebra and Model Theory. 3 (Erlogol, 2001), Novosibirsk State Tech. Univ., Novosibirsk, 2001, 136–145 | MR | Zbl

[16] Weispfenning V., “Elimination of quantifiers for certain ordered and lattice-ordered abelian groups”, Bull. Soc. Math. Belg. Sér. B, 33:1 (1981), 131–155 | MR | Zbl

[17] Wencel R., “Weakly o-minimal nonvaluational structures”, Ann. Pure Appl. Logic, 154:3 (2008), 139–162 | DOI | MR | Zbl