O-stable ordered groups
Matematičeskie trudy, Tome 13 (2010) no. 2, pp. 84-127

Voir la notice de l'article provenant de la source Math-Net.Ru

An ordered structure $\mathcal M$ is said to be o-$\lambda$-stable if, for every $A\subseteq\mathcal M$ with $|A|\le\lambda$ and every cut in $\mathcal M$, at most $\lambda$ 1-types over $A$ are consistent with the cut. In the present article, we prove that every o-stable group is abelian. We also study definable subsets and unary functions of o-stable groups.
@article{MT_2010_13_2_a3,
     author = {V. V. Verbovskiiǐ},
     title = {O-stable ordered groups},
     journal = {Matemati\v{c}eskie trudy},
     pages = {84--127},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2010_13_2_a3/}
}
TY  - JOUR
AU  - V. V. Verbovskiiǐ
TI  - O-stable ordered groups
JO  - Matematičeskie trudy
PY  - 2010
SP  - 84
EP  - 127
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2010_13_2_a3/
LA  - ru
ID  - MT_2010_13_2_a3
ER  - 
%0 Journal Article
%A V. V. Verbovskiiǐ
%T O-stable ordered groups
%J Matematičeskie trudy
%D 2010
%P 84-127
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2010_13_2_a3/
%G ru
%F MT_2010_13_2_a3
V. V. Verbovskiiǐ. O-stable ordered groups. Matematičeskie trudy, Tome 13 (2010) no. 2, pp. 84-127. http://geodesic.mathdoc.fr/item/MT_2010_13_2_a3/